* Add max_values and argmax convenience functions to ATen
* Add documentation for torch.argmax/argmin and skip max_values
* Add tests for argmax/argmin
* Dont default the dim argument
* Use dim=0 in test_torch.py for argmax tests
* Implement argmin() and argmax() without dim
* Call .contiguous() before .view(-1)
This changes type(tensor) to return `torch.Tensor` instead of
`torch.autograd.Variable`.
This requires a few implementation changes:
- torch.Tensor is now a regular Python class instead of a
pseudo-factory like torch.FloatTensor/torch.DoubleTensor
- torch.autograd.Variable is just a shell with a __new__ function.
Since no instanes are constructed it doesn't have any methods.
- Adds torch.get_default_dtype() since torch.Tensor.dtype returns
<attribute 'dtype' of 'torch._C._TensorBase' objects>
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.
This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
This moves the implementation of repeat to _utils so that the autograd
function can call it directly instead of relying on forward being called
on tensors.
This also removes _range, which was previously necessary because we
shadowed the built-in range() function.
* tensor: Ensure that the tensor is contiguous before pinning (#3266)
pin_memory() was producing out-of-order tensor when the given
tensor was transposed, i.e. in column-major order.
This commit fixes this by calling contiguous() before pinning.
* test: add contiguous test for pin_memory (#3266)
* Add torch.matmul function.
Includes test_torch, test_autograd and docs changes.
* Add __all__ to functional so imports are accidentally imported.
* Include unbind in __all__.
* Add matmul case for when one argument is 1-dimensional and the other
at least 3-dimensional.
* Add squeeze_ to Variable.
* Use squeeze_ instead of squeeze for matmul.
* fix issue #1549, expose bitwise and
* expose C bitwise or of Tensor
* expose C bitwise xor of Tensor
* use built-in method for inplace and, or, xor
* expose C bitwise lshift(ilshift) and rshift(irshift) of Tensor
Here's the command I used to invoke autopep8 (in parallel!):
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.
Also configures flake8 to match pep8's behavior.
Also configures TravisCI to check the whole project for lint.
This hooks into the (internal) ForkingPickler class in multiprocessing
to reduce tensors, storages, and CUDA events instead of our queue from
joblib. This makes it easier to use the standard multiprocessing classes
in later versions of Python.
This also exposes:
- Tensor/Storage.share_memory_()
- Module.share_memory()
These methods move the CPU tensors and storages to shared memory. If
you're using the "fork" method of multiprocessing, these objects can be
directly inherited instead of serialized through a queue.