Commit Graph

52544 Commits

Author SHA1 Message Date
Isuru Fernando
99b32a6750 [inductor] print 0.0 as 0 for triton (#164291)
Fixes https://github.com/pytorch/pytorch/issues/164157
Fixes https://github.com/pytorch/pytorch/issues/164086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164291
Approved by: https://github.com/bobrenjc93
2025-10-16 16:37:50 +00:00
Brian Hirsh
ed74dc054d add the option to disable functionalization in AOTDispatcher (#164577)
I'm cleaning this PR up as a proper way of disabling functionalization via config in AOTDispatcher. I removed the non-functionalization related changes from the original version:

(1) preventing proxy mode (and functionalization) from incorrectly decomposing CIA ops (Ed has a PR for it here: https://github.com/pytorch/pytorch/pull/164939)

(2) preventing python-dispatcher-based decomps above autograd from running. I'm not doing this for now, will likely do it in a followup

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164577
Approved by: https://github.com/ezyang
ghstack dependencies: #165372
2025-10-16 15:44:11 +00:00
Brian Hirsh
f33c7e1a43 add and fix OpInfo tests for the default partitioner (#165372)
I noticed the default partitioner was breaking in some dynamic shape tests, so prior to turning off functionalization I want to tweak it to pass all of our OpInfo tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165372
Approved by: https://github.com/ezyang
2025-10-16 15:44:11 +00:00
Lucas Kabela
e6d9d68598 [Bugfix][Dynamo] Fix Sparse tensors by graph break in Dynamo (#164873)
Fixes #164823 by making lack of support for sparse tensors very explicit (in fake tensor, inductor, and lowering code)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164873
Approved by: https://github.com/williamwen42, https://github.com/eellison, https://github.com/mlazos
2025-10-16 15:06:20 +00:00
IvanKobzarev
9272437cde Fx collectives bucketing: add bucket all_reduce (#165351)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165351
Approved by: https://github.com/eellison
2025-10-16 13:27:33 +00:00
lichuyang
f06e669f6c refactor: replace runtime_error with TORCH_CHECK for better error handling (#163628)
Fixes some parts of issue #148114

@pytorchbot label "topic: not user facing"

@FFFrog PTAL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163628
Approved by: https://github.com/albanD
2025-10-16 11:09:48 +00:00
Nan Zhang
00afa06800 Add cse for make_block_ptr in Triton codegen (#163399)
Summary: per title

Test Plan: added test cases

Differential Revision: D82648215

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163399
Approved by: https://github.com/jansel, https://github.com/njriasan
2025-10-16 05:29:48 +00:00
Oguz Ulgen
5d0b22008d Codemod inductor/fx_passes from Optional to union none (#165606)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165606
Approved by: https://github.com/aorenste
ghstack dependencies: #165604, #165605
2025-10-16 04:59:47 +00:00
Oguz Ulgen
ab6014a903 Codemod inductor/runtime from Optional to union none (#165605)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165605
Approved by: https://github.com/aorenste
ghstack dependencies: #165604
2025-10-16 04:59:47 +00:00
Oguz Ulgen
f6daffc54d Codemod codecache.py from Optional to union none (#165604)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165604
Approved by: https://github.com/aorenste
2025-10-16 04:59:37 +00:00
Simon Fan
21697feff2 [hop] run local_map with interpreter to preserve fx_traceback annotations (#165336)
We have an issue when using fx_traceback.annotate and HOPs that trace joint graphs. HOPs have bodies that have already been traced by Dynamo, and after Animesh's PR, does have the annotations. But when we lower that Dynamo HOP body to aten in either pre-dispatch or post-dispatch, we need to propagate the annotations to the aten nodes.

AOTAutograd does this indirectly by piggybacking off the `PropagateUnbackedSymInts` fx.Interpreter. I'm not sure if all HOPs should be using it to trace their joints or not. This PR adds an interpreter to local_map's implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165336
Approved by: https://github.com/yushangdi
2025-10-16 02:53:17 +00:00
Xilun Wu
12fa4192c5 [ContextParallel] add process-time based Round-Robin load-balance to CP (#163617)
**Summary**
The load-balancing problem can be modeled as [identical-machines scheduling](https://en.wikipedia.org/wiki/Identical-machines_scheduling) problem. We already provided an easy-to-extend interface in #161062 for
implementing load-balancing and in this PR we start with adding a Round-Robin solution as an example
and also a verification. This can be easily adapted to other solutions like Shortest-processing-time-first/
Longest-processing-time-first with extra padding added for collectives.

- Added a new type of `_LoadBalancer` implementation `_PTRRLoadBalancer` which is designed for
`flex_attention()`. This load-balance strategy analyzes the `BlockMask` sparsity info and perform
Round-Robin (unlike traditional Round-Robin doing it in circular order, we do in zig-zag order).
- Make `_context_parallel_buffers` and `context_parallel_unshard` handle batched load-balance
index (previously it can only handle non-batched load-balance index), like in `create_cp_block_mask`.

**Test**
`pytest test/distributed/tensor/test_attention.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163617
Approved by: https://github.com/fegin
2025-10-16 02:20:27 +00:00
Shangdi Yu
19ba506ca3 Support libtorch and posix mingw flavor (#165574)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165574
Approved by: https://github.com/desertfire
2025-10-16 01:31:50 +00:00
jmaczan
003dd13073 [dynamo, guards] Better error messages when generated guard fails on the same frame (#165242)
Not sure what exactly we want to have in the message, but that's easy to adjust. I tried to find a reliable test to reproduce this message (happens only when a guard fails right after it's created), but I ended up mocking a `guard_manager.check` function to return `False` to trigger this behavior. I think that's fine, because any other case that we pick (like datetime.now()), we want to patch one day anyway, so every time we make the next patch, will need to chase for another repro test

@williamwen42

Fixes #164990

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165242
Approved by: https://github.com/williamwen42
2025-10-16 01:05:31 +00:00
Pearu Peterson
ca8bd5dbed Move toString(ScalarType) and ScalarType ostream operator to headeronly (#164405)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164405
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
ghstack dependencies: #164350, #164354
2025-10-16 00:55:43 +00:00
Pearu Peterson
26f3803433 Remove workaround to old CUDA bug (#164354)
As in the title.

A check for https://github.com/pytorch/pytorch/issues/164348 to see if the workaround can be removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164354
Approved by: https://github.com/janeyx99, https://github.com/ngimel, https://github.com/malfet, https://github.com/jeffdaily
ghstack dependencies: #164350
2025-10-16 00:55:43 +00:00
Pearu Peterson
48064acf37 Move AT_FORALL_... macros and ScalarTypeToCPPTypeT to headeronly (#164350)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164350
Approved by: https://github.com/janeyx99
2025-10-16 00:55:42 +00:00
xinan.lin
e5a9c247bc [Fix XPU CI] [Inductor UT] Fix test cases broken by community. (#165406)
Fixes #163159, Fixes #164098, Fixes #164097, Fixes #164099, Fixes #165025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165406
Approved by: https://github.com/EikanWang, https://github.com/jansel
2025-10-16 00:53:32 +00:00
PaulZhang12
901bbcba12 Gate division bitwise numerics under a flag (#165566)
https://github.com/pytorch/pytorch/pull/164144 ensures that division for compile is bitwise equivalent with eager. However, in https://github.com/pytorch/pytorch/issues/164301, the kernel performance is regressed.

On B200:
With standard triton `/`:
6511 GB/s

With triton `div_rn`:
4692 GB/s

Further investigation is required for the generated PTX to see why there is such a large slowdown. For now, enable bitwise equivalent results under `TORCHINDUCTOR_EMULATE_DIVISION_ROUNDING` similar to emulate_precision_cast

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165566
Approved by: https://github.com/ngimel, https://github.com/eellison
2025-10-15 23:41:01 +00:00
Nikhil Patel
febb603230 [Inductor][CuTeDSL] Move load_template up two directories (#165347) (#165576)
Summary:

Moves the function used to load CuTeDSL Jinja templates up one level out of the flex attention folder. This way it can be used for more generate Inductor templates in the future.

Test Plan: `INDUCTOR_TEST_DISABLE_FRESH_CACHE=1 TORCHINDUCTOR_CACHE_DIR=~/cutetest buck2 run mode/opt //caffe2/test/inductor:cutedsl_grouped_mm -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8`

Reviewed By: drisspg

Differential Revision: D84527470

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165576
Approved by: https://github.com/jananisriram
2025-10-15 23:37:55 +00:00
Xiao Fu
568d2f3ae7 [Dynamo][Logging] Add sources/types to LazyVariableTracker logging (#165402)
Fixes #162860

This task add the variable source attrition to LazyVariableTracker when output trace bytecode

Test plan -- test/dynamo/test_error_messages.py ErrorMessagesTest.test_variable_tracker_source_attribution

The output is as specified in the prior mentioned Github issue.

<img width="961" height="59" alt="Screenshot 2025-10-13 at 10 19 44 PM" src="https://github.com/user-attachments/assets/fb27da3f-d00b-437b-bf2e-52e892572cd7" />

This is specifically for the log setup with ``TORCH_LOGS=trace_bytecode``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165402
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42

Co-authored-by: William Wen <williamwen@meta.com>
2025-10-15 23:23:09 +00:00
James Wu
b54e466fd0 Megacache integration (#163533)
This diff adds megacache integration for DynamoCache.

Because DynamoCache requires lazy serialization, i.e. it can only be serialized once all relevant backends have been compiled and we're ready for a save, we actually do the DynamoCache saving only on a call to `torch.compiler.save_cache_artifacts`.

Differential Revision: [D82735763](https://our.internmc.facebook.com/intern/diff/D82735763/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163533
Approved by: https://github.com/oulgen, https://github.com/zhxchen17
2025-10-15 22:49:15 +00:00
Sarthak Tandon
66ea76ec44 [ROCm][tunableop] Improvements to tunableop Numerical Check (#163079)
Modified the flag PYTORCH_TUNABLEOP_NUMERICAL_CHECK, so that it accepts the numerical tolerances in the format atol_rtol as compared to the previous 0 and 1. Retains previous functionality with default values as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163079
Approved by: https://github.com/naromero77amd, https://github.com/jeffdaily
2025-10-15 22:26:47 +00:00
Richard Zou
e787d532b6 tmp fix for compile internal logger issue (#165568)
Summary: Catch runtime exception when garse and scrub uninteresting configs from inductor config

Test Plan: tested locally

Differential Revision: D84727788

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165568
Approved by: https://github.com/luccafong, https://github.com/oulgen
2025-10-15 22:03:16 +00:00
eellison
b3f6d49b69 Overlap scheduler improvements (#165318)
Bucketing a number of smallish improvements:

- Account for bucketing in overlap calculation: if an in-flight collective exists with the same bucket key, reduce new collectives estimated time by its latency time
-  Update compute domination so we are ordering based on compute idx, as opposed to compute depth, so we never reorder compute. this makes it a bit easier to reason about memory, and pre-fetching, although we can exploring reordering in the future.
- When we wait on a collective, force all collectives on the same process group as it that were enqueued prior to the collective to wait as well.

Better Memory Handling:
- Pre-fetch limiting - when scheduling collectives for overlap, only pre-fetch up to a certain distance, then schedule off-path collectives (which are typically memory reducing).
- When we are above peak memory, schedule waits.

TODO:
- for each compute node, we know its original memory in the graph. we could limit pre-fetching that goes across peak memory
- By scheduling off-path collectives for overlap, we reduce memory, but if there weren't enough compute for overlap, we need to proactively schedule them. not an issue yet on examples.
- config some hard coded constants, clean up enablement (can do in subsequent pr)

On small llama 2d backward :
578 of 618 potentially hideable collectives hidden
original mem 14.4GB, rescheduled mem, 15.9GB

on forward:
254/256 potentially hideable collectives hidden
original mem 5.8 gb, reshceduled mem 5.8GB

WIP: adding tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165318
Approved by: https://github.com/ezyang, https://github.com/IvanKobzarev
ghstack dependencies: #164738, #164783, #164944, #164945, #165059
2025-10-15 21:58:47 +00:00
Howard Huang
bc1f2108d7 [PP] Update backward_counter and fsdp util to schedule class (#165513)
Fixed one issue with FSDP last reshard not being called.

Rest is mostly refactoring, changing some variables to be class variables so they can be used in https://github.com/pytorch/torchtitan/pull/1721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165513
Approved by: https://github.com/fegin
2025-10-15 21:58:16 +00:00
Boyuan Feng
f071f17911 [Graph Partition] fix partition x memory plan issue (#165514)
For `test_graph_partition_with_memory_plan_reuse`, before this PR, when using graph partition, it would error ([P1992728479](https://www.internalfb.com/phabricator/paste/view/P1992728479)):

```
def partition_0(args):
    ...
    del buf0
    return (buf3, buf4, buf5, buf2, primals_4, )

...

  File "/tmp/torchinductor_boyuan/ww/cwwc7ukfqscg2vy6ankby2fizdb377tvgyx3fwdgddrxe3g47jg6.py", line 132, in partition_0
    return (buf3, buf4, buf5, buf2, primals_4, )
                              ^^^^
NameError: name 'buf2' is not defined. Did you mean: 'buf0'?
```

When not using graph partition, it would work and give the following code ([P1992997521](https://www.internalfb.com/phabricator/paste/view/P1992997521)):

```
def call(self, args):
    ...
    buf2 = buf0; del buf0  # reuse
    ...
```

Note that the issue is buf0 is not reused for buf2 when using graph partition.

Why? Because the codegen runs `run_wrapper_ir_passes` and `memory_plan_reuse`, which pops tailing `MemoryPlanningLine` unless it is in graph output by checking `V.graph.get_output_names()`. However, for graph partition, we should check the output of the current partition instead of the graph before partition.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165514
Approved by: https://github.com/ProExpertProg, https://github.com/eellison
2025-10-15 21:52:16 +00:00
Avik Chaudhuri
fa1539594b consolidate fw and inference compile paths (#165457)
By design, fw compile and inference compile stages should share a bunch of code; just consolidating the duplication here.

Differential Revision: D84628978

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165457
Approved by: https://github.com/zhxchen17, https://github.com/tugsbayasgalan
2025-10-15 21:33:50 +00:00
zpcore
dfc8a1c5dd Fix _StridedShard incorrect split (#165533)
https://github.com/pytorch/pytorch/pull/164820 introduced a bug that `_StridedShard` will call parent class `Shard`'s `split_tensor` method, thus results in incorrect data locality. (I think @ezyang spotted this issue, but we have no test to capture this)

Meanwhile, I notice another bug that when we normalize a `_StridedShard`'s placement, it will also trigger parent class `Shard`'s `split_tensor` method because it will create a Shard class [here](0c14f55de6/torch/distributed/tensor/_api.py (L783)). I think we never test `distribute_tensor` for `_StridedShard` before. So I added a test here to compare against ordered shard.

Using classmethod because the _split_tensor logic is different between `Shard` and `_StridedShard`. Basically I want to shard on local tensors without initializing the Shard object:
```
local_tensor = _StridedShard._make_shard_tensor(dim, tensor, mesh, mesh_dim, split_factor=split_factor)
local_tensor = Shard._make_shard_tensor(dim, tensor, mesh, mesh_dim)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165533
Approved by: https://github.com/XilunWu
2025-10-15 20:52:41 +00:00
Sarthak Tandon
7f9b745494 [ROCm][tunableop] Modified Online Tuning Mode to add Instant Logging (#163965)
- Added instant logging in online tuning mode, so that each tuned GEMM is instantly written
- Allows us to have saved tuning configs, in cases of crashes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163965
Approved by: https://github.com/naromero77amd, https://github.com/jeffdaily
2025-10-15 20:02:31 +00:00
Lucas Kabela
83f9baf413 [Bugfix][Precompile][vLLM] Support for pickling einops for aot_autograd serialization in vLLM (#165359)
Fixes issue with compiling `Qwen2_5_vl` in https://github.com/vllm-project/vllm/pull/23207 (issue happens with `aot_autograd_cache`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165359
Approved by: https://github.com/jamesjwu
2025-10-15 20:00:24 +00:00
Angel Li
78f5a1ec60 varlen api (#164502)
**Summary**

Today, the only way to have variable sequence length support in PyTorch attention is through nested tensors [here](https://docs.pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html#nestedtensor-and-dense-tensor-support). We also want to add an explicit lower-level API that provides variable sequence length support without padding/masking in SDPA.

This PR builds out `varlen_attn`, the public API that users can call for the forward method, and `_varlen_attn`, the private API that calls into the Flash Attention/cuDNN backend.

**Benchmarking**

To benchmark, we compare runtime and TFLOPs against the current SDPA approach with padding.

Settings:

- 1 H100 machine
- `batch_size=8`, `max_seq_len=2048`, `embed_dim=1024`, `num_heads=16`
- dtype `torch.bfloat16`
- `is_causal=False`
- for variable length, we set sequences to be random multiples of 64 up to `max_seq_len`
- 100 runs

|        | Variable Length API | SDPA     |
|--------|--------------------|----------|
| Runtime | 0.21750560760498047 ms       | 0.43171775817871094 ms  |
| TFLOPs | 231.812         | 320.840  |

The sparsity is 0.453 which we can see matches the speedup we get from Varlen (approx 50%). TFLOPs remains around the same, with SDPA slightly larger due to potential higher overhead and total flops scaling with sequence length.

**Testing**

Run `python test/test_varlen_attention.py` for unit tests where we verify basic functionality and confirm numerical match between varlen outputs vs SDPA.

**Next steps**

Next steps from this PR (higher in the stack) include registering the private API `_varlen_attn` as a custom op, implementing backward support, and enabling cuDNN with correct numerics.

(This stack builds on top of #162326)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164502
Approved by: https://github.com/v0i0, https://github.com/drisspg
2025-10-15 19:45:55 +00:00
eellison
2b71b62045 Add Memory Estimation Tracker (#165059)
Add Memory Tracker utility, which will track live memory given alternate ordering of nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165059
Approved by: https://github.com/ezyang, https://github.com/IvanKobzarev
ghstack dependencies: #164738, #164783, #164944, #164945
2025-10-15 19:44:29 +00:00
PyTorch MergeBot
8c4b528403 Revert "[Inductor][CuTeDSL] Move load_template up two directories (#165347)"
This reverts commit 815d641599.

Reverted https://github.com/pytorch/pytorch/pull/165347 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165347#issuecomment-3407958496))
2025-10-15 19:30:46 +00:00
Luca Wehrstedt
14af1dc3da [DeviceMesh] Fix layout calculation when flattening non-contiguous dims (#165542)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165542
Approved by: https://github.com/ezyang, https://github.com/fduwjj
2025-10-15 18:55:45 +00:00
Tugsbayasgalan Manlaibaatar
2395d7d7da Relax equality check (#165460)
When an object is inherited from multiple types, the previous check would fail. So we should relax it to respect eager semantic

Differential Revision: [D84635322](https://our.internmc.facebook.com/intern/diff/D84635322)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165460
Approved by: https://github.com/avikchaudhuri
2025-10-15 18:32:01 +00:00
Catherine Lee
0aa7ebaf03 Fix periodic debug tests failing due to FakeProcessGroup things (#165479)
These happen when building with CMAKE_BUILD_TYPE=RelWithAssert

This should fix two types of failures that started with https://github.com/pytorch/pytorch/pull/163665

Disclaimer that I used a lot of AI since I don't how pybind works or what refcounts and pointers are, so idk if this is a good solution, or even a solution at all (fwiw the tests pass now)

The first one type is

Truncated:
```
    default_pg, _ = _new_process_group_helper(
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2096, in _new_process_group_helper
    backend_class = creator_fn(dist_backend_opts, backend_options)
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/distributed/fake_pg.py", line 25, in _create_fake_pg
    return FakeProcessGroup._create_internal(
RuntimeError: new_refcount != 1 INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/c10/util/intrusive_ptr.h":319, please report a bug to PyTorch. intrusive_ptr: Cannot increase refcount after it reached zero.
Exception raised from retain_ at /var/lib/jenkins/workspace/c10/util/intrusive_ptr.h:319 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from ??:0
#7 c10::detail::torchInternalAssertFail(char const*, char const*, unsigned int, char const*, char const*) from ??:0
#8 void pybind11::class_<c10d::FakeProcessGroup, (anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup> >::init_instance<(anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup>, 0>(pybind11::detail::instance*, void const*) from init.cpp:0
#9 pybind11::detail::type_caster_generic::cast(void const*, pybind11::return_value_policy, pybind11::handle, pybind11::detail::type_info const*, void* (*)(void const*), void* (*)(void const*), void const*) from :0
#10 pybind11::cpp_function::initialize<torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)#127}, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> >, int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v>(torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)#127}&&, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> > (*)(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call&) from init.cpp:0
```
and I fix it here by getting rid of `DontIncreaseRefcount` and using make_intrusive to do the ref count handling instead.  However, I also had to move the constructor to be public, which I think is not good, based on the reasoning of the original PR

The other one type is
```
Traceback (most recent call last):
  File "/var/lib/jenkins/workspace/test/test_testing.py", line 2415, in test_no_warning_on_import
    self.assertEqual(out, "")
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4233, in assertEqual
    raise error_metas.pop()[0].to_error(  # type: ignore[index]
AssertionError: String comparison failed: "/opt/conda/envs/py_3.10/lib/python3.10/s[352 chars]):\n" != ''
- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/__init__.py:29: FutureWarning: pybind11-bound class 'torch._C._distributed_c10d.FakeProcessGroup' is using an old-style placement-new '__init__' which has been deprecated. See the upgrade guide in pybind11's docs. This message is only visible when compiled in debug mode.
-   if is_available() and not torch._C._c10d_init():

To execute this test, run the following from the base repo dir:
    python test/test_testing.py TestImports.test_no_warning_on_import
```
which I fix by getting rid of the `__init__` which I think is ok since it'll just error if you try to make one?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165479
Approved by: https://github.com/ezyang
2025-10-15 18:16:08 +00:00
PyTorch MergeBot
84d141e910 Revert "[inductor] Expand use of generic benchmark function (#164938)"
This reverts commit 5c583e2573.

Reverted https://github.com/pytorch/pytorch/pull/164938 on behalf of https://github.com/clee2000 due to I think this broke test/inductor/test_cuda_repro.py::CudaReproTests::test_epilogue_fusion_with_view? [GH job link](https://github.com/pytorch/pytorch/actions/runs/18529735968/job/52813191763) [HUD commit link](f58f301313) on both rocm and the slow grad check for linux. It did run successfully on cuda workflow on trunk, I wonder if this a gpu capability thing? no clue though ([comment](https://github.com/pytorch/pytorch/pull/164938#issuecomment-3407600224))
2025-10-15 17:48:38 +00:00
Simon Layton
7c6c5d04fe Add scaled_grouped_mm_v2 and python API (#165154)
Summary:

* Add `torch._scaled_grouped_mm_v2` with more functionality and
  extensibility for future formats
* Add `torch.nn.functional.scaled_grouped_mm` as public entrypoint
* Test both original and v2 functionality

Test Plan:

```
pytest -svv -k grouped test/test_scaled_matmul_cuda.py
```

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165154
Approved by: https://github.com/drisspg, https://github.com/danielvegamyhre
2025-10-15 17:47:23 +00:00
PyTorch MergeBot
b509fb9b5d Revert "add and fix OpInfo tests for the default partitioner (#165372)"
This reverts commit bcfea48ab7.

Reverted https://github.com/pytorch/pytorch/pull/165372 on behalf of https://github.com/malfet due to Looks like it broke slow jobs, see 331b7cc054/1 ([comment](https://github.com/pytorch/pytorch/pull/165372#issuecomment-3407567748))
2025-10-15 17:38:52 +00:00
Scott Wolchok
331b7cc054 Fix double dispatch to Python for detach (#163671)
This fixes #71725.

Differential Revision: [D83857880](https://our.internmc.facebook.com/intern/diff/D83857880)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163671
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-10-15 17:24:50 +00:00
Nikhil Patel
815d641599 [Inductor][CuTeDSL] Move load_template up two directories (#165347)
Summary: Moves the function used to load CuTeDSL Jinja templates up one level out of the flex attention folder. This way it can be used for more generate Inductor templates in the future.

Test Plan: `INDUCTOR_TEST_DISABLE_FRESH_CACHE=1 TORCHINDUCTOR_CACHE_DIR=~/cutetest buck2 run mode/opt //caffe2/test/inductor:flex_flash -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8`

Differential Revision: D84527470

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165347
Approved by: https://github.com/drisspg
2025-10-15 16:34:58 +00:00
Timm Ruland
ffe3cb226a In pipeline parallelism: Use same dtype for receive and send tensor when initializing p2p communication. (#165539)
When initializing the p2p communication for pipeline parallelism, currently different default dtypes are used for the send and receive tensor here:
5c583e2573/torch/distributed/pipelining/stage.py (L935-L936)

This caused hard to trace issues when training on multiple nodes. Multiple stages on one node seem to work for some reason which probably caused the unit tests not to catch this.

Fixes #165143

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165539
Approved by: https://github.com/H-Huang
2025-10-15 15:05:55 +00:00
fduwjj
7ae123d72c [DeviceMesh] Make _flatten_mapping an object attribute instead of a class attribute (#165521)
The `_flatten_mapping` field was defined as a class attribute with a mutable default value {}:
```
_flatten_mapping: dict[str, "DeviceMesh"] = {}
```
This caused all DeviceMesh instances to share the same dictionary object. When multiple test instances tried to create flattened meshes with the same name (like "dp"), they would conflict because they were all using the same shared dictionary, resulting in the error: "Flatten mesh with mesh_dim_name dp has been created before, Please specify another valid mesh_dim_name."

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165521
Approved by: https://github.com/fegin, https://github.com/lw
2025-10-15 14:47:09 +00:00
Samuel Park
f58f301313 Fixes bug with tolist calls to GradTrackingTensors (#165184)
Fixes #161943

## The Fix
I implemented a recursive unwrapping helper function in the `tensor_to_list.cpp` file that looks for wrapped tensors and unwraps them. The recursive implementation was needed for multi-level gradTrackingTensors.

Let me know if there is any more suggestions on fixing this issue!

@guilhermeleobas @KimbingNg

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165184
Approved by: https://github.com/zou3519
2025-10-15 12:54:28 +00:00
Mwiza Kunda
5c583e2573 [inductor] Expand use of generic benchmark function (#164938)
Use the more generic `Benchmarker.benchmark` function to allow benchmarking other devices that support the required functionality, for example prologue and epilogue fusion can be benchmarked for triton CPU.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164938
Approved by: https://github.com/nmacchioni, https://github.com/eellison
2025-10-15 09:18:24 +00:00
Bob Ren
0c14f55de6 [ez] fix typo (#165282)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165282
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-10-15 06:19:24 +00:00
PyTorch MergeBot
3044e1a460 Revert "varlen api (#164502)"
This reverts commit 3681312ce0.

Reverted https://github.com/pytorch/pytorch/pull/164502 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but the doctests failure is legit ([comment](https://github.com/pytorch/pytorch/pull/164502#issuecomment-3404419420))
2025-10-15 03:56:42 +00:00
Yuanyuan Chen
b11593c31b [8/N] Apply ruff UP035 rule (#165214)
This is follow-up of #164653 to continue applying `UP035` fixes. The purpose is to finally enable this rule.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165214
Approved by: https://github.com/ezyang
2025-10-15 03:18:57 +00:00
Yuanyuan Chen
36871622f1 [2/N] Mark unused parameters in C++ code (#165121)
This is follow-up of #164912 to mark unused C++ parameters to improve code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165121
Approved by: https://github.com/Skylion007
2025-10-15 03:04:39 +00:00