Commit Graph

202 Commits

Author SHA1 Message Date
Bert Maher
98ad5ff41f [te] Disable reductions by default (#44122)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44122

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D23504769

Pulled By: bertmaher

fbshipit-source-id: 1889217cd22da529e46ab30c9319a5646267e4ec
2020-09-03 23:37:45 -07:00
Michael Suo
9dd8670d7d [jit] Better match behavior of loaded ScriptModules vs. freshly created ones (#43298)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43298

IR emitter uses `ModuleValue` to represent ScriptModules and emit IR for
attribute access, submodule access, etc.

`ModuleValue` relies on two pieces of information, the JIT type of the
module, and the `ConcreteModuleType`, which encapsulates Python-only
information about the module.

ScriptModules loaded from a package used to create a dummy
ConcreteModuleType without any info in it. This led to divergences in
behavior during compilation.

This PR makes the two ways of constructing a ConcreteModuleType equivalent,
modulo any py-only information (which, by definition, is never present in
packaged files anyway).

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D23228738

Pulled By: suo

fbshipit-source-id: f6a660f42272640ca1a1bb8c4ee7edfa2d1b07cc
2020-09-03 15:03:39 -07:00
Michael Suo
74f18476a2 [jit] fix segfault in attribute lookup on loaded ScriptModules (#43284)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43284

The IR emitter looks for attributes on modules like:
1. Check the JIT type for the attribute
2. Check the originating Python class, in order to fulfill requests for, e.g. static methods or ignored methods.

In the case where you do:
```
inner_module = torch.jit.load("inner.pt")
wrapped = Wrapper(inner_module)  # wrap the loaded ScriptModule in an nn.Module
torch.jit.script(wrapped)
```

The IR emitter may check for attributes on `inner_module`. There is no
originating Python class for `inner_module`, since it was directly
compiled from the serialized format.

Due to a bug in the code, we don't guard for this case an a segfault
results if the wrapper asks for an undefined attribute. The lookup in
this case looks like:
1. Check the JIT type for the attribute (not there!)
2. Check the originating Python class (this is a nullptr! segfault!)

This PR guards this case and properly just raises an attribute missing
compiler error instead of segfaulting.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D23224337

Pulled By: suo

fbshipit-source-id: 0cf3060c427f2253286f76f646765ec37b9c4c49
2020-09-03 15:01:59 -07:00
Ann Shan
9b3c72d46e [pytorch] Make mobile find_method return an optional (#43965)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43965

As part of a larger effort to unify the API between the lite interpreter and full JIT:
- implement torch::jit::mobile::Method, a proxy for torch::jit::mobile::Function
- add support for overloaded operator() to mobile Method and Function
- mobile find_method now returns a c10::optional<Method> (so signature matches full jit)
- moves some implementation of Function from module.cpp to function.cpp
ghstack-source-id: 111161942

Test Plan: CI

Reviewed By: iseeyuan

Differential Revision: D23330762

fbshipit-source-id: bf0ba0d711d9566c92af31772057ecd35983ee6d
2020-09-03 14:46:18 -07:00
Lu Fang
f15e27265f [torch.fx] Add support for custom op (#43248)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43248

We add the support of __torch_function__ override for C++ custom op. The logic is the same as the other components, like torch.nn.Module.
Refactored some code a little bit to make it reusable.

Test Plan: buck test //caffe2/test:fx -- test_torch_custom_ops

Reviewed By: bradleyhd

Differential Revision: D23203204

fbshipit-source-id: c462a86e407e46c777171da32d7a40860acf061e
2020-09-02 16:08:37 -07:00
BowenBao
08126c9153 [ONNX] Utilize ONNX shape inference for ONNX exporter (#40628)
Summary:
It is often that the conversion from torch operator to onnx operator requires input rank/dtype/shape to be known. Previously, the conversion depends on tracer to provide these info, leaving a gap in conversion of scripted modules.

We are extending the export with support from onnx shape inference. If enabled, onnx shape inference will be called whenever an onnx node is created. This is the first PR introducing the initial look of the feature. More and more cases will be supported following this PR.

* Added pass to run onnx shape inference on a given node. The node has to have namespace `onnx`.
* Moved helper functions from `export.cpp` to a common place for re-use.
* This feature is currently experimental, and can be turned on through flag `onnx_shape_inference` in internal api `torch.onnx._export`.
* Currently skipping ONNX Sequence ops, If/Loop and ConstantOfShape due to limitations. Support will be added in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40628

Reviewed By: mrshenli

Differential Revision: D22709746

Pulled By: bzinodev

fbshipit-source-id: b52aeeae00667e66e0b0c1144022f7af9a8b2948
2020-08-30 18:35:46 -07:00
Ashkan Aliabadi
4e39c310eb Move torch/csrc/utils/hash.h to c10/util/hash.h. (#42503)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42503

Test Plan: Imported from OSS

Reviewed By: IvanKobzarev

Differential Revision: D23252331

Pulled By: AshkanAliabadi

fbshipit-source-id: 3c4c0e27b9a7eec8560e374c2a3ba5f1c65dae48
2020-08-29 17:47:00 -07:00
Dmytro Dzhulgakov
47e489b135 Make ExtraFilesMap return bytes instead of str (#43241)
Summary:
In case we want to store binary files using `ScriptModule.save(..., _extra_files=...)` functionality. With python3 we can just use bytes only and not bother about it.

I had to do a copy-pasta from pybind sources, maybe we should upstream it, but it'd mean adding a bunch of template arguments to `bind_map` which is a bind untidy.

Let me know if there's a better place to park this function (it seems to be the only invocation of `bind_map` so I put it in the same file)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43241

Reviewed By: zdevito

Differential Revision: D23205244

Pulled By: dzhulgakov

fbshipit-source-id: 8f291eb4294945fe1c581c620d48ba2e81b3dd9c
2020-08-28 19:11:33 -07:00
Protonu Basu
58a7e73a95 [TensorExpr] Block Codegen (#40054)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40054

Reviewed By: ZolotukhinM

Differential Revision: D22061350

Pulled By: protonu

fbshipit-source-id: 004f7c316629b16610ecdbb97e43036c72c65067
2020-08-28 09:53:42 -07:00
aizjForever
cdc3e232e9 Add __str__ and __repr__ bindings to SourceRange (#43601)
Summary:
Added the bindings for `__str__` and `__repr__` methods for SourceRange

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43601

Test Plan:
`python test/test_jit.py`

cc gmagogsfm

Reviewed By: agolynski

Differential Revision: D23366500

Pulled By: gmagogsfm

fbshipit-source-id: ab4be6e8f9ad5f67a323554437878198483f4320
2020-08-27 12:30:47 -07:00
Yanan Cao
35a36c1280 Implement JIT Enum type serialization and deserialization (#43460)
Summary:
[Re-review tips: nothing changed other than a type in python_ir.cpp to fix a windows build failure]

Adds code printing for enum type
Enhance enum type to include all contained enum names and values
Adds code parsing for enum type in deserialization
Enabled serialization/deserialization test in most TestCases. (With a few dangling issues to be addressed in later PRs to avoid this PR grows too large)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43460

Reviewed By: albanD

Differential Revision: D23284929

Pulled By: gmagogsfm

fbshipit-source-id: e3e81d6106f18b7337ac3ff5cd1eeaff854904f3
2020-08-24 12:04:31 -07:00
Pavel Belevich
d94b10a832 Revert D23223281: Add Enum TorchScript serialization and deserialization support
Test Plan: revert-hammer

Differential Revision:
D23223281 (f269fb83c1)

Original commit changeset: 716d1866b777

fbshipit-source-id: da1ad8387b7d7aad9ff69e1ebeb5cd0b9394c2df
2020-08-22 02:38:12 -07:00
Zino Benaissa
abe878ce96 Allow Freezing of Module containing interface attribute (#41860)
Summary:
This patch allows to freeze model that utilizes interfaces. Freezing works
under the user assumption that the interfase module dones not aliases with
any value used in the model.

To enable freezing of such modules, added an extra pramater:

torch._C._freeze_module(module, ignoreInterfaces = True)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41860

Reviewed By: eellison

Differential Revision: D22670566

Pulled By: bzinodev

fbshipit-source-id: 41197a724bc2dca2e8495a0924c224dc569f62a4
2020-08-21 18:57:13 -07:00
Yanan Cao
f269fb83c1 Add Enum TorchScript serialization and deserialization support (#42963)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42963

* Adds code printing for enum type
* Enhance enum type to include all contained enum names and values
* Adds code parsing for enum type in deserialization
* Enabled serialization/deserialization test in most TestCases. (With a few dangling issues to be addressed in later PRs to avoid this PR grows too large)

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D23223281

Pulled By: gmagogsfm

fbshipit-source-id: 716d1866b7770dfb7bd8515548cfe7dc4c4585f7
2020-08-21 18:13:27 -07:00
Yanan Cao
0bd35de30e Add Enum convert back to Python object support (#43121)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43121

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D23222628

Pulled By: gmagogsfm

fbshipit-source-id: 6850c56ced5b52943a47f627b2d1963cc9239408
2020-08-21 10:36:51 -07:00
taivu
665da61d2b Replace Conv1d with Conv2d (#42867)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42867

Test Plan: Imported from OSS

Reviewed By: kimishpatel

Differential Revision: D23177916

Pulled By: kimishpatel

fbshipit-source-id: 68cc40cf42d03e5b8432dc08f9933a4409c76e25
2020-08-20 21:36:51 -07:00
Sinan Nasir
6e1127ea3f [NCCL] Changed FutureNCCL's then callback logic for better efficiency. (#42869)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42869

We realized that when we invoke a simple callback that divides the tensors by `world_size` after `allreduce`, the performance was almost 50% lower in terms of QPS compared to the case where a simple `allreduce` hook is used with no `then` callback.

The main problem was as we call `work.wait()` before invoking `then` callback, we were synchronizing `work`'s stream with the default PyTorch stream inside [`runHook`](https://github.com/pytorch/pytorch/blob/master/torch/csrc/distributed/c10d/reducer.cpp#L609) and stalling the backward computation.

In that PR, we ensure that FutureNCCL's `then` callback is not stalling the backward computation. Assuming single-process single-device, `FutureNCCL` gets a new stream from device's pool using `at::cuda::getStreamFromPool` to run `callback` and before invoking the `callback` inline it synchronizes `WorkNCCL`'s stream by callback's stream not the default stream.

ghstack-source-id: 110208431

Test Plan: Run performance benchmark tests to validate performance issue is resolved. Also, `python test/distributed/test_c10d.py` to avoid any odd issues.

Reviewed By: pritamdamania87

Differential Revision: D23055807

fbshipit-source-id: 60e50993f1ed97497514eac5cb1018579ed2a4c5
2020-08-19 19:42:22 -07:00
Yael Dekel
3c5e3966f4 [ONNX] Squeeze operator should give an error when trying to apply to a dimension with shape > 1 (#38476)
Summary:
The ONNX spec for the Squeeze operator:

> Remove single-dimensional entries from the shape of a tensor. Takes a parameter axes with a list of axes to squeeze. If axes is not provided, all the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised.

Currently, as explained in issue https://github.com/pytorch/pytorch/issues/36796, it is possible to export such a model to ONNX, and this results in an exception from ONNX runtime.

Fixes https://github.com/pytorch/pytorch/issues/36796.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/38476

Reviewed By: hl475

Differential Revision: D22158024

Pulled By: houseroad

fbshipit-source-id: bed625f3c626eabcbfb2ea83ec2f992963defa19
2020-08-17 17:41:46 -07:00
Meghan Lele
fcc10d75e1 [JIT] Add property support to TorchScript classes (#42389)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42389

**Summary**
This commit adds support for properties to TorchScript classes,
specifically for getters and setters. They are implemented essentially
as pointers to the methods that the corresponding decorators decorate,
which are treated like regular class methods. Deleters for properties
are considered to be out of scope (and probably useless for TorchScript
anyway).

**Test Plan**
This commit adds a unit test for a class with a property that has both
getter and setter and one that has only a getter.

`python test/test_jit.py TestClassType.test_properties`

Test Plan: Imported from OSS

Reviewed By: eellison, ppwwyyxx

Differential Revision: D22880232

Pulled By: SplitInfinity

fbshipit-source-id: 4828640f4234cb3b0d4f3da4872a75fbf519e5b0
2020-08-14 12:56:57 -07:00
taivu
ccd9f3244b Get, save, and load module information for each operator (#42133)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42133

Test Plan:
We save a module with module debugging information as follows.
```
import torch
m = torch.jit.load('./detect.pt')
# Save module without debug info
m._save_for_lite_interpreter('./detect.bc')
# Save module with debug info
m._save_for_lite_interpreter('./detect.bc', _save_debug_info_in_bytecode=True)
```
Size of the file without module debugging information: 4.508 MB
Size of the file with module debugging information: 4.512 MB

Reviewed By: kimishpatel

Differential Revision: D22803740

Pulled By: taivu1998

fbshipit-source-id: c82ea62498fde36a1cfc5b073e2cea510d3b7edb
2020-08-14 01:25:27 -07:00
taivu
02c8ad70f2 Reconstruct scopes (#41615)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41615

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D22611331

Pulled By: taivu1998

fbshipit-source-id: d4ed4cf6360bc1f72ac9fa24bb4fcf6b7d9e7576
2020-08-13 22:38:16 -07:00
Bram Wasti
ada8404f2d [jit] Scaffold a static runtime (#42753)
Summary:
The premise of this approach is that a small subset of neural networks are well represented by a data flow graph.  The README contains more information.

The name is subject to change, but I thought it was a cute reference to fire.

suo let me know if you'd prefer this in a different spot.  Since it lowers a JIT'd module directly I assumed the JIT folder would be appropriate.  There is no exposed Python interface yet (but is mocked up in `test_accelerant.py`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42753

Reviewed By: zou3519

Differential Revision: D23043771

Pulled By: bwasti

fbshipit-source-id: 5353731e3aae31c08b5b49820815da98113eb551
2020-08-12 13:05:27 -07:00
Ksenija Stanojevic
e845b0ab51 [Resending] [ONNX] Add eliminate_unused_items pass (#42743)
Summary:
This PR:

- Adds eliminate_unused_items pass that removes unused inputs and initializers.
- Fixes run_embed_params function so it doesn't export unnecessary parameters.
- Removes test_modifying_params in test_verify since it's no longer needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42743

Reviewed By: hl475

Differential Revision: D23058954

Pulled By: houseroad

fbshipit-source-id: cd1e81463285a0bf4e60766c8c87fc9a350d9c7e
2020-08-11 20:30:50 -07:00
Vasiliy Kuznetsov
79b8328aaf optimize_for_mobile: bring packed params to root module (#42740)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42740

Adds a pass to hoist conv packed params to root module.
The benefit is that if there is nothing else in the conv module,
subsequent passes will delete it, which will reduce module size.

For context, freezing does not handle this because conv packed
params is a custom object.

Test Plan:
```
PYTORCH_JIT_LOG_LEVEL=">hoist_conv_packed_params.cpp" python test/test_mobile_optimizer.py TestOptimizer.test_hoist_conv_packed_params
```

Imported from OSS

Reviewed By: kimishpatel

Differential Revision: D23005961

fbshipit-source-id: 31ab1f5c42a627cb74629566483cdc91f3770a94
2020-08-08 15:53:20 -07:00
Yanan Cao
9597af01ca Support iterating through an Enum class (#42661)
Summary:
[5/N] Implement Enum JIT support

Implement Enum class iteration
Add aten.ne for EnumType

Supported:
Enum-typed function arguments
using Enum type and comparing them
Support getting name/value attrs of enums
Using Enum value as constant
Support Enum-typed return values
Support iterating through Enum class (enum value list)

TODO:
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42661

Reviewed By: SplitInfinity

Differential Revision: D22977364

Pulled By: gmagogsfm

fbshipit-source-id: 1a0216f91d296119e34cc292791f9aef1095b5a8
2020-08-06 22:56:34 -07:00
BowenBao
a6c8730045 [ONNX] Add preprocess pass for onnx export (#41832)
Summary:
in `_jit_pass_onnx`, symbolic functions are called for each node for conversion. However, there are nodes that cannot be converted without additional context. For example, the number of outputs from split (and whether it is static or dynamic) is unknown until the point where it is unpacked by listUnpack node. This pass does a preprocess, and prepares the nodes such that enough context can be received by the symbolic function.
* After preprocessing, `_jit_pass_onnx` should have enough context to produce valid ONNX nodes, instead of half baked nodes that replies on fixes from later postpasses.
* `_jit_pass_onnx_peephole` should be a pass that does ONNX specific optimizations instead of ONNX specific fixes.
* Producing more valid ONNX nodes in `_jit_pass_onnx` enables better utilization of the ONNX shape inference https://github.com/pytorch/pytorch/issues/40628.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41832

Reviewed By: ZolotukhinM

Differential Revision: D22968334

Pulled By: bzinodev

fbshipit-source-id: 8226f03c5b29968e8197d242ca8e620c6e1d42a5
2020-08-06 20:34:12 -07:00
Basil Hosmer
feeb515ad5 add Quantizer support to IValue (#42438)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42438

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D22894190

Pulled By: bhosmer

fbshipit-source-id: b2d08abd6f582f29daa6cc7ebf05bb1a99f7514b
2020-08-05 12:56:18 -07:00
Will Constable
6d1e43c5a6 Release the GIL before invokeOperator (#42341)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41865

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42341

Reviewed By: ezyang

Differential Revision: D22928622

Pulled By: wconstab

fbshipit-source-id: 8fa41277c9465f816342db6ec0e6cd4b30095c5c
2020-08-05 11:51:39 -07:00
BowenBao
842759591d [ONNX] Refactor ONNX fixup for Loop and If (#40943)
Summary:
* move both under new file `fixup_onnx_controlflow`
* move the fixup to where the ONNX loop/if node is created, as oppose to running the fixup as postpass. This will help with enable onnx shape inference later.
* move `fuseSequenceSplitConcat` to `Peephole`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40943

Reviewed By: mrshenli

Differential Revision: D22709999

Pulled By: bzinodev

fbshipit-source-id: 51d316991d25dc4bb4047a6bb46ad1e2401d3d2d
2020-08-03 22:33:17 -07:00
Yanan Cao
bdcf320bed Support custom exception message (#41907)
Summary:
Raise and assert used to have a hard-coded error message "Exception". User provided error message was ignored. This PR adds support to represent user's error message in TorchScript.

This breaks backward compatibility because now we actually need to script the user's error message, which can potentially contain unscriptable expressions. Such programs can break when scripting, but saved models can still continue to work.

Increased an op count in test_mobile_optimizer.py because now we need aten::format to form the actual exception message.

This is built upon an WIP PR:  https://github.com/pytorch/pytorch/pull/34112 by driazati

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41907

Reviewed By: ngimel

Differential Revision: D22778301

Pulled By: gmagogsfm

fbshipit-source-id: 2b94f0db4ae9fe70c4cd03f4048e519ea96323ad
2020-08-01 13:03:45 -07:00
Yanan Cao
655f376460 Implement Enum sugared value and Enum constant support (#42085)
Summary:
[3/N] Implement Enum JIT support

* Add enum value as constant support
* Add sugared value for EnumClass

Supported:
Enum-typed function arguments
using Enum type and comparing them
Support getting name/value attrs of enums
Using Enum value as constant

TODO:
Add PyThon sugared value for Enum
Support Enum-typed return values
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42085

Reviewed By: eellison

Differential Revision: D22758042

Pulled By: gmagogsfm

fbshipit-source-id: 5c6e571686c0b60d7fbad59503f5f94b3b3cd125
2020-07-31 17:29:55 -07:00
Elias Ellison
2285a2fc11 refactor canonical ordering to also be able to do isAfter checks (#42140)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42140

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D22798378

Pulled By: eellison

fbshipit-source-id: d1a549f43b28fe927729597818a46674c58fe81d
2020-07-31 15:11:40 -07:00
Will Constable
646042e0fb Add suggestion to enumerate ModuleDict in error message (#41946)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41946

Reviewed By: ngimel

Differential Revision: D22774243

Pulled By: wconstab

fbshipit-source-id: 5cfbe52b5b1c540f824593e67ae6ba4973458bb5
2020-07-27 16:24:00 -07:00
Shen Li
d4736ef95f Add done() API to Future (#42013)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42013

Test Plan: Imported from OSS

Reviewed By: rohan-varma

Differential Revision: D22729596

Pulled By: mrshenli

fbshipit-source-id: ed31021a35af6e2c3393b9b14e4572cf51013bc0
2020-07-24 14:13:41 -07:00
Yanan Cao
890b52e09f Reduce instability in runCleanUpPasses by reordering passes. (#41891)
Summary:
Currently constant pooling runs before const propagation, which can create more constants that need pooling. This can get in the way of serialization/deserialization stability because each time user serializes and deserializes a module, runCleanUpPasses is called upon it. Doing so multiple times would lead to different saved module.

This PR moves constant pooling after const propagation, which may slow down const propagation a little bit, but would otherwise side-step aforementioned problem.

test_constant_insertion in test_jit.py is also updated because after fixing the pass ordering, the number of constants is no longer a constant and it is extremely difficult to get the exact number with the current convoluted test structure. So for now, I changed the test to check only that CSE doesn't change number of "prim::constant" rather than comparing against a known number. Also left a TODO to improve this test.

ConstantPropagation pass is replaced by ConstantPropagationImmutableTypes because the latter is used in runCleanUpPasses. If not replaced, the former would create new CSE opportunities by folding more constants. This voids the purpose of the test case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41891

Reviewed By: colesbury

Differential Revision: D22701540

Pulled By: gmagogsfm

fbshipit-source-id: 8e60dbdcc54a93dac111d81b8d88fb39387224f5
2020-07-24 11:39:20 -07:00
Ksenija Stanojevic
af5d0bff00 [ONNX] Add pass that fuses Conv and BatchNormalization (#40547)
Summary:
Add pass that fuses Conv and Batchnormalization nodes into one node Conv.
This pass is only applied in inference mode (training is None or TrainingMode.Eval).
Since this pass needs access to param_dict it is written outside peephole file where these kind of passes (fusing multiple nodes into one) is usually placed.

This PR also adds wrapper skipIfNoEmbed to skip debug_embed_params test:
Pass that fuses Conv and Batchnorm changes the params of resnet model and parameters of onnx and pytorch model won't match. Since parameters are not matching, debug_embed_params test for test_resnet will fail and that is expected, therefore debug_embed_params test for test_resnet should be skipped.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40547

Reviewed By: gchanan

Differential Revision: D22631687

Pulled By: bzinodev

fbshipit-source-id: fe45812400398a32541e797f727fd8697eb6d8c0
2020-07-22 14:59:27 -07:00
Yanan Cao
4a3aad354a [1/N] Implement Enum JIT support (#41390)
Summary:
* Add EnumType and AnyEnumType as first-class jit type
* Add Enum-typed IValue
* Enhanced aten::eq to support Enum

Supported:
Enum-typed function targuments
using Enum type and comparing them

TODO:
Add PyThon sugared value for Enum
Support getting name/value attrs of enums
Support Enum-typed return values
Support enum values of different types in same Enum class
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41390

Reviewed By: eellison

Differential Revision: D22524388

Pulled By: gmagogsfm

fbshipit-source-id: 1627154a64e752d8457cd53270f3d14aea4b1150
2020-07-18 22:15:06 -07:00
Meghan Lele
758edcd7df [JIT] Replace use of "blacklist" in python/init.cpp (#41456)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41456

**Test Plan**
Continuous integration.

**Fixes**
This commit partially addresses #41443.

Test Plan: Imported from OSS

Reviewed By: Krovatkin

Differential Revision: D22544270

Pulled By: SplitInfinity

fbshipit-source-id: 649b30e1fcc6516a4def6b148a1da07bc3ce941d
2020-07-17 11:33:05 -07:00
Taewook Oh
44b9306d0a Export replaceAllUsesAfterNodeWith for PythonAPI (#41414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41414

This diff exports replaceAllUsesAfterNodeWith to PythonAPI.

Test Plan: Tested locally. Please let me know if there is a set of unit tests to be passed outside of the default ones triggered by Sandcastle.

Reviewed By: soumith

Differential Revision: D22523211

fbshipit-source-id: 3f075bafa6208ada462abc57d495c15179a6e53d
2020-07-14 22:20:19 -07:00
Michael Suo
ca1b8ebbcb move misc implementation out of jit/__init__.py (#41154)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41154

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22445213

Pulled By: suo

fbshipit-source-id: 200545715c5ef13beb1437f49e01efb21498ddb7
2020-07-13 16:59:55 -07:00
Meghan Lele
ce3ba3b9bc [JIT] Add support for backend-lowered submodules (#41146)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41146

**Summary**
This commit adds support for using `Modules` that have been lowered as
submodules in `ScriptModules`.

**Test Plan**
This commit adds execution and save/load tests to test_backends.py for
backend-lowered submodules.

**Fixes**
This commit fixes #40069.

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22459543

Pulled By: SplitInfinity

fbshipit-source-id: 02e0c0ccdce26c671ade30a34aca3e99bcdc5ba7
2020-07-10 16:35:24 -07:00
Kimish Patel
8a79eec98a Add add_relu fusion pass to optimize_for_mobile. (#40252)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40252

As title says.

Test Plan:
python test/test_mobile_optimizer.py

Imported from OSS

Differential Revision: D22126825

fbshipit-source-id: a1880587ba8db9dee0fa450bc463734e4a8693d9
2020-07-10 08:10:22 -07:00
Kimish Patel
c5dcf056ee JIT pass for add relu fusion. (#39343)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39343

Building on top of previous PR that adds fused add_relu op, this PR adds
a JIT pass to transform input graph to find all fusable instancs of add
+ relu and fuses them.

Test Plan:
python test/test_jit.py TestJit.test_add_relu_fusion

Imported from OSS

Differential Revision: D21822396

fbshipit-source-id: 12c7e8db54c6d70a2402b32cc06c7e305ffbb1be
2020-07-09 16:25:13 -07:00
Zino Benaissa
690946c49d Generalize constant_table from tensor only to ivalue (#40718)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40718

Currently only constant except tensor must be inlined during serialization.
Tensor are stored in the contant table. This patch generalizes this capability
to any IValue. This is particularly useful for non ASCII string literal that
cannot be inlined.

Test Plan: Imported from OSS

Differential Revision: D22298169

Pulled By: bzinodev

fbshipit-source-id: 88cc59af9cc45e426ca8002175593b9e431f4bac
2020-07-09 09:09:40 -07:00
generatedunixname89002005287564
86f72953dd [Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D22452776

fbshipit-source-id: a103da6a5b1db7f1c91ca25490358da268fdfe96
2020-07-09 08:49:32 -07:00
Elias Ellison
3f32332ee6 [JIT][Easy]move remove mutation to own file (#41137)
Summary:
This should be in its own file...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41137

Reviewed By: jamesr66a

Differential Revision: D22437922

Pulled By: eellison

fbshipit-source-id: 1b62dde1a4ebac673b5c60aea4f398f734d62501
2020-07-08 17:00:35 -07:00
Brian Vaughan
dfd21ec00d Revert D22418716: [JIT] Add support for backend-lowered submodules
Test Plan: revert-hammer

Differential Revision:
D22418716 (6777ea19fe)

Original commit changeset: d2b2c6d5d2cf

fbshipit-source-id: 5ce177e13cab0be60020f8979f9b6c520cc8654e
2020-07-08 13:14:21 -07:00
Michael Suo
c93e96fbd9 [jit] move script-related implementation out of torch/jit/__init__.py (#40902)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40902

See the bottom of this stack for context.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D22360210

Pulled By: suo

fbshipit-source-id: 4275127173a36982ce9ad357aa344435b98e1faf
2020-07-08 11:38:34 -07:00
Meghan Lele
6777ea19fe [JIT] Add support for backend-lowered submodules (#40841)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40841

**Summary**
This commit adds support for using `Modules` that have been lowered as
submodules in `ScriptModules`.

**Test Plan**
This commit adds execution and save/load tests to test_backends.py for
backend-lowered submodules.

**Fixes**
This commit fixes #40069.

Test Plan: Imported from OSS

Differential Revision: D22418716

Pulled By: SplitInfinity

fbshipit-source-id: d2b2c6d5d2cf3042a620b3bde7d494f1abe28dc1
2020-07-07 21:00:40 -07:00
Elias Ellison
37a572f33e fix grad thrashing of shape analysis (#40939)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40939

Previously, when we would do shape analysis by running the op with representative inputs, we would always set the grad property to false. This led to a wrong static analysis when we would create differentiable subgraphs, and propagate shapes without also propagating requires_grad, and then uninline them.

Test Plan: Imported from OSS

Differential Revision: D22394676

Pulled By: eellison

fbshipit-source-id: 254e6e9f964b40d160befe0e125abe1b7aa2bd5e
2020-07-06 17:12:13 -07:00