Commit Graph

106 Commits

Author SHA1 Message Date
Edward Z. Yang
9790d90e4b Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-26 01:35:40 +00:00
PyTorch MergeBot
a7edf71360 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 8fae7027b3.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to breaking internal builds, see https://www.internalfb.com/diff/D38984222
2022-08-25 00:49:40 +00:00
Edward Z. Yang
8fae7027b3 Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-23 22:04:07 +00:00
Nikolay Korovaiko
5b621205f4 Revert "Revert "adding a custom caster for c10::SymInt (#82692)"" (#83223)
This should fix the MacOS build errors and reland #82692
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83223
Approved by: https://github.com/albanD
2022-08-12 00:46:50 +00:00
PyTorch MergeBot
daeea7d2c3 Revert "adding a custom caster for c10::SymInt (#82692)"
This reverts commit dee63f4f7b.

Reverted https://github.com/pytorch/pytorch/pull/82692 on behalf of https://github.com/seemethere due to Broke internal builds, see [logs](https://www.internalfb.com/intern/sandcastle/job/4503600373141339/insights)
2022-08-09 22:17:41 +00:00
Edward Z. Yang
988bd0173c Add OpOverload.decompose API (#83075)
This allows you to directly call into the CompositeImplicitAutograd
implementation of an operator, *without* changing any aspects of the
dispatcher state.  In particular, you can use this to recursively call
into a decomposition, dispatching back to your tensor subclass/mode
as desired.

Hypothetically, we should also make these available in the
decompositions dictionary, but I'm leaving this as future work as
enumerating these decompositions is annoying (as operators are lazily
registered.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83075
Approved by: https://github.com/albanD
2022-08-09 18:53:19 +00:00
Nikolay Korovaiko
dee63f4f7b adding a custom caster for c10::SymInt (#82692)
### Description
Adding a custom caster for `c10::SymInt`. This simplifies handling of c10::SymInt on C++/Pytorch boundary. Namely, removing if statements to handle the union nature (e.g. SymIntNode, int) of c10::SymInt.

### Issue
<!-- Link to Issue ticket or RFP -->

### Testing
<!-- How did you test your change? -->

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82692
Approved by: https://github.com/ezyang
2022-08-08 21:40:53 +00:00
Edward Z. Yang
fd5ac1e6b5 Rename SymbolicIntNode to SymIntNodeImpl (#82350)
Done via

```
git grep -l 'SymbolicIntNode' | xargs sed -i 's/SymbolicIntNode/SymIntNodeImpl/g'
```

Reasoning for the change:

* Sym is shorter than Symbolic, and consistent with SymInt
* You usually will deal in shared_ptr<...>, so we're going to
  reserve the shorter name (SymIntNode) for the shared pointer.

But I don't want to update the Python name, so afterwards I ran

```
 git grep -l _C.SymIntNodeImpl | xargs sed -i 's/_C.SymIntNodeImpl/_C.SymIntNode/'
```

and manually fixed up the binding code

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82350
Approved by: https://github.com/Krovatkin
2022-07-28 18:27:45 +00:00
Edward Z. Yang
7e60e315da Add support for Generator conversion to/from IValue (#81697)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81697
Approved by: https://github.com/anjali411
2022-07-19 16:50:10 +00:00
Edward Z. Yang
91b0250606 Remove dead code from torch.ops torch function handling (#80993)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80993
Approved by: https://github.com/anjali411
2022-07-06 22:56:18 +00:00
Edward Z. Yang
421f04dd02 Only allow numbers as tensors if operator was explicitly allowlisted so (#80587)
Fixes https://github.com/pytorch/pytorch/issues/80508

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80587
Approved by: https://github.com/ngimel
2022-06-30 18:59:38 +00:00
Edward Z. Yang
f7ee061638 Wconstab/reland pysymint (#79795)
rebased https://github.com/pytorch/pytorch/pull/79617/ to see if issues are reproducible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79795
Approved by: https://github.com/malfet
2022-06-20 22:55:06 +00:00
PyTorch MergeBot
44436947bc Revert "Reland PySymInt (#79617)"
This reverts commit 8ef6356f26.

Reverted https://github.com/pytorch/pytorch/pull/79617 on behalf of https://github.com/zengk95 due to this is breaking periodic jobs (and maybe pull) on trunk
2022-06-16 19:40:27 +00:00
Nikolay Korovaiko
8ef6356f26 Reland PySymInt (#79617)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79617
Approved by: https://github.com/Chillee
2022-06-16 04:18:06 +00:00
PyTorch MergeBot
b8db0a0475 Revert "Python Bindings for SymInts (#78135)"
This reverts commit d332724071.

Reverted https://github.com/pytorch/pytorch/pull/78135 on behalf of https://github.com/ezyang due to broke torchvision tests
2022-06-15 13:52:14 +00:00
Nikolay Korovaiko
d332724071 Python Bindings for SymInts (#78135)
This PR adds support for `SymInt`s in python. Namely,
* `THPVariable_size` now returns `sym_sizes()`
* python arg parser is modified to parse PyObjects into ints and `SymbolicIntNode`s
* pybind11 bindings for `SymbolicIntNode` are added, so size expressions can be traced
* a large number of tests added to demonstrate how to implement python symints.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78135
Approved by: https://github.com/ezyang
2022-06-14 02:17:59 +00:00
Edward Z. Yang
6b273444c4 Add logit ref; allow non-refs to be called in refs.
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77816

Approved by: https://github.com/mruberry
2022-05-21 02:35:14 +00:00
Edward Z. Yang
0a14a4c280 Register prims as operators.
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python.  You now need to give a full
schema string for your prims.  The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117

Approved by: https://github.com/mruberry, https://github.com/albanD
2022-05-11 16:38:14 +00:00
Edward Z. Yang
f2eed9400d Register PrimTorch refs as decompositions.
For the most part, PrimTorch refs have the same signature as their
ATen equivalents.  I modify most PrimTorch refs to register themselves
as decompositions, using the prim name they wrap to find the aten name
(except for a few cases where the prim/aten names mismatch).  There are
some exclusions, falling into one of two categories:

- The torch equivalent was already implemented as a CompositeImplicitAutograd
  decomposition in C++

- The ref doesn't support enough features (e.g., the real deal has more
  kwargs / overloads than are currently implemented)

PrimTorch refs are written as a single function that supports all
overloads, and this style is convenient for cases where we have a bundle
of overloads for what morally is a single overload with a Union type
on an argument (which we ought to have supported in
native_functions.yaml but blah); to support registering a single decomp
for all the overloads, we modify register_decomposition to register
to ALL overloads if you pass it an overload packet.  This is technically
BC breaking but no tests started failing because of it.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76835

Approved by: https://github.com/Chillee, https://github.com/mruberry
2022-05-06 20:11:45 +00:00
Edward Yang
2f90c82265 Get rid of TorchScript sparse tensor is experimental warning. (#73874)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73874

These get triggered when you are doing normal stuff with sparse
tensors and `__torch_dispatch__`, but it all works fine.  No need
to warn.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D34707395

Pulled By: ezyang

fbshipit-source-id: 3492c03abb1df1e925af3855dbf772784405d8c1
(cherry picked from commit 95e5981b304abf0367740906c238b29cadeea41c)
2022-03-09 15:45:24 +00:00
anjali411
beda4e8b2f Fix fx tracing for OpOverload (#73940)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/73940

Test Plan: Imported from OSS

Reviewed By: zhxchen17

Differential Revision: D34727831

Pulled By: anjali411

fbshipit-source-id: 26e7044a1d5ba9ee0854bda784633b134971074b
(cherry picked from commit 69685e19b3de5ea3f494464eddcce44e93cb0f4d)
2022-03-08 21:47:55 +00:00
Peter Bell
9ef5c679ef record_function: add torchbind alternative API (#72301)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72301

First step in resolving #35026.

This adds `PythonRecordFunction` which is a `torch::CustomClassHolder`
for `at::RecordFunction` to keep the ATen code free of torch includes.
And adds new unused internal API functions
`_record_function_enter_new` which return the torchbind object.

Once the FC period is expired, `torch.profiler.record_function` will
be updated to use this new internal API. Then once BC period is
expired, the cpp_custom_type_hack-based API can be removed.

Test Plan: Imported from OSS

Reviewed By: dagitses

Differential Revision: D34586311

Pulled By: robieta

fbshipit-source-id: d3eb9ffad7b348548a2b22c75203a92d1cb5115b
(cherry picked from commit 92d2ca808e5fbd20c9d6645dcabc3f059f9ef2d3)
2022-03-08 03:26:27 +00:00
anjali411
086645ad77 Update __torch_dispatch__ to return op overload instead of the opoverload packet function (#72673)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72673

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D34627164

Pulled By: anjali411

fbshipit-source-id: 3cb6406a392d530bf9da36b4d8e0a62b30e6497e
(cherry picked from commit 65b85a0a67df4d0f16ac8964e2b685d478a610fb)
2022-03-07 22:38:42 +00:00
Can Balioglu
80b19c4c8c Enable Python bindings for UntypedStorage (#68945)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945

This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110

Test Plan: Run the existing unit and integration tests.

Reviewed By: albanD

Differential Revision: D32676505

fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
2022-01-20 02:11:34 +00:00
Peter Bell
b2e79ed5ec Remove WindowsTorchApiMacro.h in favor of Export.h (#69585)
Summary:
Follow up to https://github.com/pytorch/pytorch/issues/68095

This also changes the files from the ATen folder to include c10's `Export.h` instead since they can't ever be exporting `TORCH_PYTHON_API`.

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69585

Reviewed By: mrshenli

Differential Revision: D32958594

Pulled By: albanD

fbshipit-source-id: 1ec7ef63764573fa2b486928955e3a1172150061
2021-12-09 17:30:09 -08:00
Scott Wolchok
82f7f8d471 [PyTorch] Adopt IValue::toTupleRef() where obvious (#65505)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65505

Generated with

`fastmod -m 'toTuple\(\)(\s*)->' 'toTupleRef()${1}.'`

, followed by

`fastmod '(std::move\(.*)toTupleRef\(\).' '${1}toTuple()->'`

to unbreak 2 callsites.
ghstack-source-id: 142065835

Test Plan: CI

Reviewed By: gchanan

Differential Revision: D31131025

fbshipit-source-id: 54457ae5bbeb38db9c7f196d469b98521c3d3f34
2021-11-02 10:22:18 -07:00
Zhengxu Chen
f20614af21 [jit] Allow custom class functions to be traced in invokeScriptMethodFromPython(). (#67380)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/67380

Test Plan: eyes

Reviewed By: tugsbayasgalan

Differential Revision: D31975656

fbshipit-source-id: 47c8c9854899e9fed5a635f88470711dc4c95970
2021-10-27 16:38:50 -07:00
Zhengxu Chen
b55a2500d2 [jit] Remove graph() call from abstract Function interface. (#65967)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65967

Graph is an implementation detail. If user wants to get access to the
underlying graph, they should be able to explicitly dynamic cast instead.
ghstack-source-id: 141659819

Test Plan: no behavior change.

Reviewed By: gmagogsfm

Differential Revision: D31326153

fbshipit-source-id: a0e984f57c6013494b92a7095bf5bb660035eb84
2021-10-27 11:54:26 -07:00
Scott Wolchok
e88d1c4f10 [PyTorch] Add tuple inline storage (#64066)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64066

I noticed a bunch of time being spent heap-allocating Tuples
in the unpickler. 1-, 2-, and 3-element Tuples are apparently common
enough that they get their own bytecode instructions, so I decided to
try also giving them their own representation. We store up to 3
IValues inline in `Tuple` rather than doing a second heap allocation
for a `std::vector<IValue>`.
ghstack-source-id: 140695395

Test Plan:
Added automated tests for TupleElements.

Pixel 3 before: https://www.internalfb.com/intern/aibench/details/761596366576284
Pixel 3 after: https://www.internalfb.com/intern/aibench/details/591414145082422
We went from 347 ms to 302 ms.

Reviewed By: dhruvbird

Differential Revision: D30592622

fbshipit-source-id: 93625c54c9dca5f765ef6d5c191944179cb281a8
2021-10-15 12:16:51 -07:00
Scott Wolchok
2d885ab73d [jit] Reduce refcounting of Types (#65345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345

FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165

Test Plan:
CI

perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.

Reviewed By: hlu1

Differential Revision: D31027361

fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
2021-10-08 09:03:04 -07:00
Zhengxu Chen
ac99d63f83 [jit] Make operation call accept Stack& instead Stack* (#63414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63414

Misuse of raw pointer in here where stack is never nullable.
ghstack-source-id: 136938318

Test Plan:
compiles.

Imported from OSS

Reviewed By: ejguan

Differential Revision: D30375410

fbshipit-source-id: 9d65b620bb76d90d886c800f54308520095d58ee
2021-08-30 11:49:20 -07:00
Jiewen Tan
04caef8e1d Improve IMethod::getArgumentNames to deal with empty argument names list (#62947)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62947

This diff improved IMethod::getArgumentNames to deal with empty argument names list.

Test Plan:
buck test mode/dev //caffe2/caffe2/fb/predictor:pytorch_predictor_test -- PyTorchDeployPredictor.GetEmptyArgumentNamesValidationMode
buck test mode/dev //caffe2/caffe2/fb/predictor:pytorch_predictor_test -- PyTorchDeployPredictor.GetEmptyArgumentNamesRealMode

Reviewed By: wconstab

Differential Revision: D30179974

fbshipit-source-id: c7aec35c360a73318867c5b77ebfec3affee47e3
2021-08-11 16:44:00 -07:00
Edward Yang
cdf702b60c Reject kwonly arguments passed positionally in torch.ops (#62981)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62981

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: Chillee

Differential Revision: D30211030

Pulled By: ezyang

fbshipit-source-id: aae426592e92bf3a50076f470e153a4ae7d6f101
2021-08-10 07:16:00 -07:00
Natalia Gimelshein
e3944ab00e Revert D30038175: Improve IMethod::getArgumentNames to deal with empty argument names list
Test Plan: revert-hammer

Differential Revision:
D30038175 (64b3ab6407)

Original commit changeset: 46f08dda9418

fbshipit-source-id: 604735d2300487a0b75890b330d7ba5b3e7145b2
2021-08-06 14:58:43 -07:00
Jiewen Tan
64b3ab6407 Improve IMethod::getArgumentNames to deal with empty argument names list (#62782)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62782

This diff improved IMethod::getArgumentNames to deal with empty argument names list.

Test Plan:
buck test mode/dev caffe2/caffe2/fb/predictor:pytorch_predictor_test -- PyTorchDeployPredictor.GetEmptyArgumentNamesValidationMode
buck test mode/dev caffe2/caffe2/fb/predictor:pytorch_predictor_test -- PyTorchDeployPredictor.GetEmptyArgumentNamesRealMode

Reviewed By: wconstab

Differential Revision: D30038175

fbshipit-source-id: 46f08dda94187160b4d6ee87600d1b46fe934222
2021-08-05 01:32:00 -07:00
Richard Barnes
9e77113e85 irange-ify 11 (#62121)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62121

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29879701

fbshipit-source-id: 5c51879c88fa6a5790db241c8b33ec0dc4b177ca
2021-07-28 13:32:09 -07:00
Meghan Lele
4a2e8b53bb [JIT] Add torch._C.ScriptList` (#52832)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52832

**Summary**
This commit adds `torch._C.ScriptList`, a list type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made in TorchScript to instances of `torch._C.ScriptList`
are visible in Python even when it is not returned from the function.

`torch._C.ScriptList` is implemented using a modified version of pybind's
`stl_bind.h`-style bindings attached to `ScriptList` and `ScriptListIterator`,
wrapper classes around `c10::impl::GenericList` and
`c10::impl::GenericList::iterator`. These bindings allow instances of
`torch._C.ScriptList` to be used as if it were a
regular `list` in Python. Reference semantics are achieved by simply
retrieving the `IValue` contained in `ScriptList` in `toIValue` (invoked
when converting Python arguments to `IValues` before calling TorchScript
code).

**Test Plan**
This commit adds `TestScriptList` to `test_list_dict.py`, a set of tests
that check that all of the common list operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D29478121

Pulled By: SplitInfinity

fbshipit-source-id: 652cc25cfa37debe28db9527504846f22abd8b54
2021-07-01 20:28:13 -07:00
Ansley Ussery
0fbc471d10 Support default values on NamedTuple fields (#54682)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54682

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D27327241

Pulled By: ansley

fbshipit-source-id: 76546f1770d50ebc3435bba3b74540e3c6be8a1c
2021-06-26 15:18:21 -07:00
Richard Barnes
b162d95e46 Fix a number of lint perf and safety issues in torch (#59897)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59897

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29037012

fbshipit-source-id: 7c16286d5fc2b67964fb65f8374dfff4d1a7aefb
2021-06-15 13:14:51 -07:00
Meghan Lele
b14c3205fd [JIT] Add torch._C.ScriptDict (#52659)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52659

**Summary**
This commit adds `torch._C.ScriptDict`, a dictionary type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made to instances of `torch._C.ScriptDict` in TorchScript are visible in
Python even when it is not returned from the function. Instances can be
constructed by passing an instance of a Python dictionary to
`torch.jit.script`. In the case of an empty dictionary, its type is
assumed to be `Dict[str, Tensor]` to be consistent with the handling of
empty dictionaries in TorchScript source code.

`torch._C.ScriptDict` is implemented using a modified version of pybind's `stl_bind.h`-style bindings attached to `ScriptDict`, `ScriptDictIterator` and `ScriptDictKeyIterator`, wrapper classes around `c10::impl::GenericDict` and `c10::impl::GenericDict::iterator`. These bindings allow instances of `torch._C.ScriptDict` to be used as if it were a regular `dict` Python. Reference semantics are achieved by simply retrieving the `IValue` contained in `ScriptDict` in `toIValue` (invoked when converting Python arguments to `IValues` before calling TorchScript code).

**Test Plan**
This commit adds `TestScriptDict` to `test_list_dict.py`, a set of tests
that check that all of the common dictionary operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.

Differential Revision:
D27211605
D27211605

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Pulled By: SplitInfinity

fbshipit-source-id: 446d4e5328375791aa73eb9e8b04dfe3465af960
2021-05-27 10:25:30 -07:00
Luca Wehrstedt
36e47af58b Pass reference to parent future in callbacks (#57635)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57635

Note: this PR looks massive, but it's just one simple change, codemodded many times.

In many cases, a callback needs to access the value/error produced by the parent future. In Python this was easy because the callback was invoked with the parent future as argument, and could thus inspect it. In C++ the callbacks didn't take any arguments, thus in many cases we worked around this by capturing the future in its own callback. This is risky (leads to reference cycle and thus memory leak) and must be done carefully (spoiler: sometimes we weren't).
ghstack-source-id: 128296580

Test Plan: CI

Reviewed By: wanchaol

Differential Revision: D28178783

fbshipit-source-id: 6de02c4568be42123372edc008f630d5ddae0081
2021-05-07 03:59:18 -07:00
Yi Huang (Symphony)
ba78bf1363 [standaloneRunner] fix another GIL mutithreading issue exposed by torch::jit::toIValue() (#57688)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57688

P412982836 says that `torch::jit::toIValue()` will also touch GIL through `torch::jit::createGenericDict()` (P412848640)
So we have to move `torch::jit::toIValue()` out of multithreading execution

Reviewed By: hyuen

Differential Revision: D28236527

fbshipit-source-id: 43a33dbcfc828cc42c5e1230c8f5cb415bf7bde4
2021-05-05 21:41:04 -07:00
Scott Wolchok
b87d3fa432 [PyTorch][jit] Don't allow create() on singleton types (#56807)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56807

If I understand correctly, there's no reason to create your own instance of these global singleton types.
ghstack-source-id: 127312270

Test Plan: CI

Reviewed By: SplitInfinity

Differential Revision: D27973447

fbshipit-source-id: f12df69d185f1baaa45f2ac6eac70570a7a65912
2021-04-30 10:28:50 -07:00
James Reed
71a5314591 Fix ScriptMethod dispatch on __torch_function__ (#56103)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56103

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D27784142

Pulled By: jamesr66a

fbshipit-source-id: 555dcb7c3a98b8fb9e9ca9b499cafad54e819aa7
2021-04-15 08:46:43 -07:00
Nikita Shulga
6a39613f35 [BE] Make torch/csrc/jit/tensorexpr/ clang-tidy clean (#55628)
Summary:
Mostly auto-generated changes using
```
 python3 tools/clang_tidy.py -c build -x torch/csrc/jit/tensorexpr/eval.cpp -s
```
With following common patterns manually fixed
- Use ` = default` instead of `{}`
- deleted methods should be public
- Use pass-by-value + std::move instead of pass-by-reference+copy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55628

Reviewed By: walterddr

Differential Revision: D27655378

Pulled By: malfet

fbshipit-source-id: 92be87a08113435d820711103ea9b0364182c71a
2021-04-08 19:44:14 -07:00
Meghan Lele
6866c033d5 [JIT] Add recursive scripting for class type module attributes (#55124)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55124

**Summary**
This commit modifies type inference (used by the module scripting code)
so that it tries to script the type of any class instances that it
encounters. This enables recursive, automatic scripting of class type
module attributes.

**Test Plan**
This commit adds a test case for this to `TestClassType`.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23971883

Pulled By: SplitInfinity

fbshipit-source-id: 7a5a2e7c12ee68cbdeb0a07e6aaf98734a79cb06
2021-04-02 12:16:21 -07:00
Rohan Varma
a37fbf9b45 [Futures] Bump log verbosity when ignoring cb errors in python future. (#54476)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54476

Per title. For `add_done_callback`, we log but swallow exceptions in order to keep consistent with what concurrent.futures python library does, see discussion in https://github.com/pytorch/pytorch/pull/45675.

Although, it would be good to improve the verbosity here as this can be a source of confusion if users are setting a different future via `add_done_callback`, and an error is hit resulting in an unexpected hang (see https://github.com/pytorch/pytorch/issues/52132 for more details on how this can happen).
ghstack-source-id: 125300389

Test Plan: CI

Reviewed By: lw

Differential Revision: D27253004

fbshipit-source-id: 72ed21c8fb6d27de5797c17fc46b762f893e6fea
2021-03-31 15:17:06 -07:00
Michael Suo
8a170fbacd [package] fix mangling issues with TorchScript (#54915)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54915

TorchScript and torch.package have different mangling schemes. To avoid
them interfering with each other, we should undo the torch.package
mangling before processing anything with TorchScript (since TS
independently makes sure that no names collide).

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D27410472

Pulled By: suo

fbshipit-source-id: d1cc013c532d9abb7fb9615122bc465ded4785bb
2021-03-31 00:58:05 -07:00
Christian Puhrsch
2668149b8c Export torch::jit::toIValue (#54449)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/54448

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54449

Reviewed By: SplitInfinity

Differential Revision: D27243154

Pulled By: cpuhrsch

fbshipit-source-id: fc21d6ce251b868356ad8ea13ae891fb56e311ce
2021-03-22 17:17:18 -07:00
James Reed
1fe6a6507e [WIP][FX] Fix tracing support for torchbind (#52884)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/52884

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D26675801

Pulled By: jamesr66a

fbshipit-source-id: 8e5100bcea17589a53163abf6ab991658e11fa3a
2021-03-05 23:40:16 -08:00