Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30445
Create distributed and rpc directories under caffe/test for better management
of unit tests.
Differential Revision: D18702786
fbshipit-source-id: e9daeed0cfb846ef68806f6decfcb57c0e0e3606
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32491
This PR enables IValue to be able to hold a pure PyObject by adding a
new enum tag, a new jit_type to denote PyObject existance in IValue and
the JIT type system. We don't and not plan to expose this to user.
This is the basic piece that enable ivalue to be adopted broader like
making RRef always hold IValue, it might also simplify some compiler
logic
ghstack-source-id: 97039980
Test Plan: Imported from OSS
Differential Revision: D19502234
fbshipit-source-id: 90be001706d707d376cfbea25980fd82980df84a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31841
Add Tuple Constants to JIT. The constraint here is that all elements of a tuple must themself be insertable as a a constant. Previously tuples were special cased in constant propagation, but now that there are more passes that are inserted constants, such as freezing, we should just have tuples be representable as constants.
Test Plan: Imported from OSS
Differential Revision: D19439514
Pulled By: eellison
fbshipit-source-id: 3810ba08ee349fa5598f4b53ea64525996637b1a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31408
We'll error out when a graph is quantized with different QSchemes.
This only occurs when we have two modules that have same types (e.g. two Conv2d modules initialized with
same arguments) and quantized with two configs that would produce different quantized graphs, for example
per tensor affine and per channel affine. This is a rare case, so it should be OK to skip for now.
Actual support will come later.
Test Plan:
test_jit.py, test_quantization.py
Imported from OSS
Differential Revision: D19162366
fbshipit-source-id: 798f06d0ddef0c8458237ce88b62159cc77eec8b
Summary:
Unchecked cast just refines the type of a value, the value stays the same, so the output should alias the input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32309
Differential Revision: D19439037
Pulled By: eellison
fbshipit-source-id: fe6902d0d9a5a9ef5e9c13e1dbd056576d8c327e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32232
Previously, we were using `operator<<` as the default way of printing
IValue constants during serialization. The semantics of `operator<<`
were ill-defined; and this bit us in particular with strings and lack of
quoting.
This PR defines the role of `operator<<`: much like Python `str()`, it
is intended to produce a human-readable-ish representation for
debugging purposes.
This PR also defines a new `repr()` function on IValue that is intended
to produce a valid Python expression that can be used to recreate an
object with the same value. `repr()` is not defined on all IValue kinds
(notably tensors!) for this reason.
Test Plan: Imported from OSS
Differential Revision: D19417036
Pulled By: suo
fbshipit-source-id: c102d509eaf95a28b6a62280bc99ca6f09603de5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32187Fixes#32058. Previously we would build documentation during the pytorch
linux cuda build. We don't actually need to do this because we have a
dedicated python_doc_build job that builds the docs. With this change,
the CUDA build should run ~10 minutes faster, giving devs faster signal.
Test Plan: - Check the CUDA (10.1) build on this PR, make sure it doesn't build the docs.
Differential Revision: D19400417
Pulled By: zou3519
fbshipit-source-id: e8fb2b818146f33330e06760377a9afbc18a71ed
Summary:
`test_init_ops` calls `orthogonal_` which fails without lapack (this test was just missing a skip condition)
The cpp tests would fail with a `undefined symbol` error if run with `BUILD_TESTS=0`, so this PR skips them if that flag is `0`
](https://our.intern.facebook.com/intern/diff/19320064/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31965
Pulled By: driazati
Differential Revision: D19320064
fbshipit-source-id: d1dcd36714107688ded25a414e8969abe026bd03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31978
Currently we keep a `mangleIndex_` that's intenral to compilation unit and
just increment the index when we found the original name is mangled, this doesn't
guarantee the new name is not defined.
This PR fixes the problem by querying whether the new name is defined or not.
fixes: https://github.com/pytorch/pytorch/issues/31268
Test Plan:
fixes the issue
Imported from OSS
Differential Revision: D19350535
fbshipit-source-id: fe3262b2838d4208ab72e2cd4a5970b3a792ae86
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31800
If we know that two constants are the same object, we can ignore other constraints and pool them together. This fixes an issue introduced by the other PR where quantization relied on constant pooling happening for correctness.
Test Plan: Imported from OSS
Differential Revision: D19269499
Pulled By: eellison
fbshipit-source-id: 9d4396125aa6899cb081863d463d4f024135cbf4
Summary:
This hooks up `inspect` so that Python functions get their parameters
names attached instead of naming them `0, 1, 2, ...`. This also fixes
issue #28537 where `ignore` functions were improperly typing `self`.
](https://our.intern.facebook.com/intern/diff/19256434/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29300
Pulled By: driazati
Differential Revision: D19256434
fbshipit-source-id: 6a1fe7bd0afab708b8439517798955d0abfeb44c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31343
Fix an issue in TorchScript tracing for modules with `c10::List<at::Tensor>` as an output. TensorList was not supported properly.
Test Plan: unit tests
Reviewed By: wanchaol
Differential Revision: D18850722
fbshipit-source-id: 87a223104d1361fe754d55deceeb1e8bbcad629b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29220
Support for accessing constant is added in previous
PRs, this PR re-enables the foldbn tests
Test Plan:
test_jit.py
Imported from OSS
Differential Revision: D18846848
fbshipit-source-id: 90ceaf42539ffee80b984e0d8b2420da66c263c3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29219
We added class constant in previous PRs, this PR allows access to
class constant in the object API
Test Plan:
build/bin/test_jit
python test/test_jit.py
Imported from OSS
Differential Revision: D18846851
fbshipit-source-id: 888a6517d5f747d1f8ced283c0c2c30b2f6c72c6
Summary:
7zip and cmake are part of base image, no need to re-install. Remove the install step can make build/test more stable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30897
Differential Revision: D19232961
Pulled By: mingbowan
fbshipit-source-id: fa3bbd1325839a2a977bf13fdbd97fda43793b8d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517
This is going to be used by upsample (which currently uses magic values to represent optionals).
For now, we just introduce a fake function for testing (torch._test_optional_float(x)).
Test Plan: Imported from OSS
Differential Revision: D19198721
Pulled By: gchanan
fbshipit-source-id: 0a1382fde0927c5d277d02d62bfb31fb574b8c74
Summary:
This is the first stab at running profile-insensitive optimizations on pre-profiled graphs. Running those optimizations has a potential to simplify graphs greatly before GuardElimination and GuardElimination should be able to remove more guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31392
Differential Revision: D19173639
Pulled By: Krovatkin
fbshipit-source-id: 2485a2a598c10f9b5445efb30b16439ad4551b3f
Summary:
Previously we would only catch `py::cast_error` which led to incomprehensible error messages like: `TypeError: 'NoneType' object is not iterable`. We are running arbitrary pybind code here, and not doing anything with the error message, so we should be less restrictive with the types of errors we catch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31398
Differential Revision: D19166655
Pulled By: eellison
fbshipit-source-id: 84db8b3714c718b475913f2f4bb6f19e62f2d9ec
Summary:
Fixes#27495
This adds builtins as another piece of a concrete type. They're separate from normal functions since they represent the `BuiltinFunction` sugared value (which is a direct call to a builtin op). It also moves the builtins related logic from `jit/__init__.py` to `jit/_builtins.py` so it can be used from `jit/_recursive.py` to look up functions in the builtins table.
](https://our.intern.facebook.com/intern/diff/19149779/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31269
Pulled By: driazati
Differential Revision: D19149779
fbshipit-source-id: d4e5e5d7d7d528b75a2f503e6004394251a4e82d
Summary:
Stacked PRs
* #29940 - [jit] Fix parsing of big float literals
* **#29935 - [jit] Fix hex literal parsing**
* #29931 - [jit] Throw a better error for int too big for int64_t
Previously these were all parsed as `0`
](https://our.intern.facebook.com/intern/diff/19124944/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29935
Pulled By: driazati
Differential Revision: D19124944
fbshipit-source-id: 1ee0c1dee589933363a5efba069a2cfaf94373c5
Summary:
Add a section for unsupported ops, and modules. Automatically generate the properties and attributes that aren't bound, and for ops that have semantic mismatches set up tests so the docs stay up to date.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31329
Differential Revision: D19164472
Pulled By: eellison
fbshipit-source-id: 46290bb8a64d9de928cfb1eda5ff4558c3799c88
Summary:
Remove most of the testing for `weak_script`, since we removed it. Refactor a few of the existing tests to use recursive scripting api.
Fix for https://github.com/pytorch/pytorch/issues/23965
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31193
Differential Revision: D18966291
Pulled By: eellison
fbshipit-source-id: 6b1e18c293f55017868a14610d87b69be42bde12
Summary:
Resubmit of https://github.com/pytorch/pytorch/pull/30356 and https://github.com/pytorch/pytorch/pull/31014 :'(
The last commit contains the fix. There was an internal FBcode error not able to compile the previous `impl_default->second.equal(default_val.second))` line. I tried various fixes in C++ internally but couldn't figure anything out. This is a good example of the programming costs of going from python -> c++ for different types of objects, because the conceptual overhead has expanded in scope from (python) -> (python, c++, pybind).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31123
Differential Revision: D18936128
Pulled By: eellison
fbshipit-source-id: 7d8fd66a6dd4a3e9838f3a0b68c219b6565a9462
Summary:
Previously list elements were only unified for tensor lists.
This improves error messages and expands the unification logic
to include all types.
](https://our.intern.facebook.com/intern/diff/18837726/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30777
Pulled By: driazati
Differential Revision: D18837726
fbshipit-source-id: c4d275562a8429700987569426d694faa8f6002e
Summary:
This makes `nn.Transformer` usable from TorchScript. It preserves backwards compatibility via `__setstate__` on the encoder/decoder.
Fixes https://github.com/pytorch/pytorch/issues/24173
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28561
Differential Revision: D18124753
Pulled By: driazati
fbshipit-source-id: 7314843e5aa9c9bf974c4672e4edb24ed8ef4a6f
Summary:
Peephole optimize out type refinements when they are no longer refining the type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31024
Differential Revision: D18920958
Pulled By: eellison
fbshipit-source-id: 6d05d9812b9f9dcf001de760a78a2042fb832773
Summary:
Adds `torch.floor_divide` following the numpy's `floor_divide` api. I only implemented the out-of-place version, I can add the inplace version if requested.
Also fixes https://github.com/pytorch/pytorch/issues/27512
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30493
Differential Revision: D18896211
Pulled By: eellison
fbshipit-source-id: ee401c96ab23a62fc114ed3bb9791b8ec150ecbd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30356
This finishes up the `torch.jit.overload` api for free-functions.
- defaults now required on the implementation function itself
- fully follows [overload spec](https://mypy.readthedocs.io/en/latest/more_types.html#function-overloading) such that the following is supported
```
overload
def mouse_event(x1: int, y1: int) -> ClickEvent: ...
def mouse_event(x1: int,
y1: int,
x2: Optional[int] = None,
y2: Optional[int] = None): ...
```
Note: `jit.overload` isn't supported yet for UDT, but is support for modules. This PR doesn't make the same changes for modules, if reviewers think I should include them then I could do so in a follow up PR or wait to land this. Since that's still an internal api I think it's fine, and the changes here would allow us to expose `torch.jit.overload` on free functions.
Test Plan: Imported from OSS
Differential Revision: D18864774
Pulled By: eellison
fbshipit-source-id: 6c566738bd6f0551a000a9ea8d56e403636b7856
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30877
Previously, when the environment tried to reassign variables which had been assigned to "inf" or "nan" it would fail because they are not simple values. Constant prop exposed this, a test was failing internally because of it.
Test Plan: Imported from OSS
Reviewed By: Krovatkin
Differential Revision: D18861016
Pulled By: eellison
fbshipit-source-id: b9b72978a26a0b00b13bf8ea7685825551f5a541
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30544
Run Constant Propagation upon compilation only on ops with non-aliasing inputs and outputs. This speeds up the first run of `torchvision.models.resnet18` by over 50% and speeds up compilation by about 25% (although the effects didn't seem additive with with https://github.com/pytorch/pytorch/pull/30503, so I'm going to land this PR first and then see if caching still has a sizable impact).
Running constant prop only with non-aliasing types does a lot of graph cleanup by removing constant ifs and a bunch of other smaller ops. It also avoids all the jitter problems we had when we tried running full constant prop previously. Bc it is idempotent it doesn't jitter, and it doesn't jitter graphs constructed from tracing because tracing doesn't emit any ops that only involve non-aliasing inputs.
Full constant prop isn't idempotent because what ops are run depends on the state of mutation in alias db, which will often change upon successive iterations of constant propagation, and bc it affects graphs constructed from tracing.
Edit: if we were okay with running constant propagation on graphs constructed from tracing (potentially making them hard to debug), an alternative would be to run constant propagation until the graph reaches a fixed point.
Test Plan: Imported from OSS
Differential Revision: D18833607
Pulled By: eellison
fbshipit-source-id: 92a0adb4882d67ed5a0db5c279f5e122aeeba54a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30892
Fixes all outstanding lints and actually installs a properly configured
flake8
Test Plan: Imported from OSS
Differential Revision: D18862825
Pulled By: suo
fbshipit-source-id: 08e9083338a7309272e17bb803feaa42e348aa85
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30821
While investigating while our tests didn't catch #30704 I noticed that none
of our tests in method_tests() were being run on CUDA. This diff moves
those tests into the new device-generic test framework so that we also get
CUDA coverage. For expediency, I blacklisted all tests which didn't work
on CUDA (rather than fix them); that's something we can leave for future PRs.
This is done by way of a new expectedFailure gadget.
Note that all occurences of skipIfNoLapack needed to be replaced with
skipCPUIfNoLapack.
I punted for test_jit; it's possible those tests should also run CUDA but a JIT
expert should take a look here.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18840089
Pulled By: ezyang
fbshipit-source-id: 66b613b5024c91d3e391c456bb642be7e73d4785
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30551
To enable quantizing with shared types, we need to insert GetAttr nodes for
quantization parameters since the code might be shared by multiple module instances
and we'd like to make quantized module instance also share the same code but with
different values of attributes.
Test Plan:
test_jit.py, test_quantization.py
Imported from OSS
Differential Revision: D18818652
fbshipit-source-id: fc95623cac59dcedd9e3f95397524eae515e7a11
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30037
Support quantization for modules with reused submodules, e.g. relu (automatically make unique)
We first do a pass on the graph to find all duplicate uses of the same module, and record the `Value`s of the
module instance, for each of these values we create a new module and change the access to that module.
Test Plan:
python test/test_jit.py
Imported from OSS
Differential Revision: D18821483
fbshipit-source-id: 1698b981e9e9f0c728d9f03fcbcfbd260151f679
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30548
ClassTypes can be shared among different module instances, but previously we assumed
they would be unique, this PR enables the insert_observers pass to work with shared class types
Test Plan:
python test/test_jit.py
python test/test_quantization.py
Imported from OSS
Differential Revision: D18802465
fbshipit-source-id: b782e71e44a043af45577ac2b5c83e695155bb8b
Summary:
This fixes the second issue reported in https://github.com/pytorch/pytorch/issues/29909 namely, a loop counter is assigned the wrong values after transitioning to a bailout graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30186
Differential Revision: D18646845
Pulled By: Krovatkin
fbshipit-source-id: 1f7c601dd9f35892979385ffa132fb0886a4f203
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30362
Right now the qat modules(qat.ConvBn2d, qat.ConvBnReLU2d, qat.Conv2d)
are not convinent to support other dimensions of Conv, this PR refactors
these modules so that we can support Conv1d/Conv3d better
Test Plan:
python test/test_quantization.py
Imported from OSS
Differential Revision: D18691152
fbshipit-source-id: 5b561e6b054eadd31b98cabdf1ac67a61ee9b805
Summary:
In this PR, we mainly handle the case there are multiple usage of a Value when inserting the quant-dequant pair. This change will add one dequant for each usage of the Value.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30145
Differential Revision: D18671600
Pulled By: lly-zero-one
fbshipit-source-id: 61324a98861da85b80dcf7e930381311118ae53b
Summary:
This PR looks for a `constants.pkl` file at the top level in a zip file
in `torch.load`. If found, it calls `torch.jit.load` instead and issues
a warning to call `torch.jit.load` directly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29339
Differential Revision: D18611095
Pulled By: driazati
fbshipit-source-id: f070a02f6b5509054fc3876b3e8356bbbcc183e1
Summary:
A prim::BailOut also needs to capture max trip counts as for some graphs they aren't constants and they are used in continuation graphs to figure out the remaining number of iterations to run.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30097
Differential Revision: D18624446
Pulled By: Krovatkin
fbshipit-source-id: 085d25981c6669f65848996cd2d50066cc252048
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29577
`torch.autograd.grad` can return none is one of the input is not in the
autograd graph or not requires_grad, this fix it so that it return a
list of optional tensor instead of list of tensor.
This might have BC issue unfortunately, but I think it's rare both
internal and external (only training use it, and most of the training
use backward, instead of autograd.grad), so whitelist it.
Test Plan: Imported from OSS
Differential Revision: D18491642
fbshipit-source-id: d32b2b3446cf9e8b9a98f6d203a21a75643d8991
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29494
`calculate_qparams` of per channel quantization should return the axis, this
PR added this and also added corresponding support in graph mode
Test Plan:
python test/test_jit.py
Imported from OSS
Differential Revision: D18580905
fbshipit-source-id: f9691c1f043f8bca39f81716a4d0b10f60a65396
Summary:
This uses newly added InlinedCallStack to print the original call stack
even if the real call stack is shallower because of inlining.
This change also makes torchscript stacktraces look like python ones.
Example:
```
torch.jit.script
def baz(c, b):
return c + b
torch.jit.script
def foo(c, b):
return baz(c, b)
torch.jit.script
def bar(c, b):
return foo(c, b)
bar(torch.rand(10), torch.rand(9))
```
Output before:
```
Traceback (most recent call last):
File "fail.py", line 25, in <module>
bar(torch.rand(10), torch.rand(9))
RuntimeError: The size of tensor a (10) must match the size of tensor b (9) at non-singleton dimension 0
The above operation failed in interpreter, with the following stack trace:
at fail.py:15:11
torch.jit.script
def baz(c, b):
return c + b
~~~~~ <--- HERE
```
Output after:
```
Traceback (most recent call last):
File "fail.py", line 41, in <module>
bar(torch.rand(10), torch.rand(9))
RuntimeError: The size of tensor a (10) must match the size of tensor b (9) at non-singleton dimension 0
The above operation failed in interpreter.
Traceback (most recent call last):
File "fail.py", line 33
torch.jit.script
def bar(c, b):
return foo(c, b)
~~~ <--- HERE
File "fail.py", line 29, in foo
torch.jit.script
def foo(c, b):
return baz(c, b)
~~~ <--- HERE
File "fail.py", line 25, in baz
torch.jit.script
def baz(c, b):
return c + b
~~~~~ <--- HERE
```
Output of non-scripted python code:
```
Traceback (most recent call last):
File "fail.py", line 36, in <module>
bar(torch.rand(10), torch.rand(9))
File "fail.py", line 21, in bar
return foo(c, b)
File "fail.py", line 18, in foo
return baz(c, b)
File "fail.py", line 15, in baz
return c + b
RuntimeError: The size of tensor a (10) must match the size of tensor b (9) at non-singleton dimension 0
```
Differential Revision: D18532812
Test Plan: Imported from OSS
Pulled By: ZolotukhinM
fbshipit-source-id: e7e5ba5e4a8f1c7086406271d0f1685d9db8541a
Summary:
Stacked PRs
* https://github.com/pytorch/pytorch/issues/29244 - Use custom CRC
* **https://github.com/pytorch/pytorch/issues/29232 - Add zipfile serialization**
This adds a serialization method that uses a zipfile (https://github.com/pytorch/pytorch/issues/26567). Right now it is
guarded behind a flag `_use_new_zipfile_serialization`. In release mode it seems to have performance about the same / slightly better than the current serialization in some simple benchmarks for large/small tensors.
Follow ups:
* Flip the `_use_new_zipfile_serialization` flag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29232
Differential Revision: D18332036
Pulled By: driazati
fbshipit-source-id: 1bac0847c4d599612cba905f2cac8248783be2f4
Summary:
Fix for https://github.com/pytorch/pytorch/issues/21545
We we were silently giving wrong semantics previously:
Python behavior:
```
def test(x=[]):
x.append(1)
return len(x)
print(test()) # 1
print(test()) # 2
```
By checking at the python layer, we prevent any new models from serializing this behavior but do not break existing serialized models.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29833
Differential Revision: D18513168
Pulled By: eellison
fbshipit-source-id: 6fe73f28e1f9d39dedeaf67a04718089d14401a1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28988
Make ModuleList, Sequential, ModuleDict go through the same pathway as other modules, cleaning up a bunch of code and allowing them to define custom forwards and other methods.
EDIT: Previously, we would ignore an nn.Sequential attribute if it was not in `__constants__` ("did you forget to add it to Constants"). This PR scripts it even if it is not in `__constants__`. Is that what we want?
Test Plan: Imported from OSS
Differential Revision: D18402821
Pulled By: eellison
fbshipit-source-id: dd4f28fb0df0d1ba4ad1b3bc34ba141959a433f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29529
Pull Request resolved: https://github.com/pytorch/glow/pull/3771
We would like to replace `conv_prepack` with `conv2d_prepack` and `conv_unpack` with `conv2d_unpack`.
This makes the naming consistent between 2D and 3D conv:
```
torch.ops.quantized.conv2d_prepack
torch.ops.quantized.conv2d_unpack
torch.ops.quantized.conv2d
torch.ops.quantized.conv3d_prepack
torch.ops.quantized.conv3d_unpack
torch.ops.quantized.conv3d
```
We should do this earlier rather than later when we have more users for the quantized conv2d ops, for better engineering.
The replacement bash command is as the follows:
```
find ./ -type f -exec sed -i -e 's/quantized::conv_prepack/quantized::conv2d_prepack/g' {} \;
find ./ -type f -exec sed -i -e 's/quantized::conv_unpack/quantized::conv2d_unpack/g' {} \;
find ./ -type f -exec sed -i -e 's/torch.ops.quantized.conv_prepack/torch.ops.quantized.conv2d_prepack/g' {} \;
find ./ -type f -exec sed -i -e 's/torch.ops.quantized.conv_unpack/torch.ops.quantized.conv2d_unpack/g' {} \;
```
ghstack-source-id: 93661879
Test Plan: CI
Reviewed By: jackm321
Differential Revision: D18421079
fbshipit-source-id: 17ae8b1ee79223bd2c5d4bbccd57af6580c4ab12
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28985
Remove the observer module in the quantized model
Test Plan:
python test/test_jit.py 'TestJit.test_insert_quant_dequant'
Imported from OSS
Differential Revision: D18253777
fbshipit-source-id: 26081c4c3fd3dc049cafa8c0383219bc4c233589
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29432
This removes a lot of the private methods on torch._C.ScriptModule,
and instead implements functionality in terms of slot_dict_impl views
to implement _parameter, _buffers, and _modules in nn.Module.
A followup PR should also remove the _register_attribute,
_register_module, and _register_parameter methods, but this requires
more refactoring of the way tracing creates modules and replication
for data parallel works.
Test Plan: Imported from OSS
Differential Revision: D18387963
Pulled By: zdevito
fbshipit-source-id: f10d47afeb30c1e05d704ae5ac4166830933125c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17662
I'm not sure if `arange` needs to be in python_arg_parser at all, given the schemas in native_functions.yaml. In any case this at least fixes the dytpe mismatch.
In follow up PRs I will try to handle some of the other ops that do type inference at the python level, like randint.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27629
Differential Revision: D17885939
Pulled By: eellison
fbshipit-source-id: f97a8bc722b7ab77de1c42a992e49a4a3175ad60
Summary:
For the same reason we don't allow iteration over heterogenous types (modulelists/tuples) with types that don't have a static length, we also can't break/continue within them - we need to statically know all types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29474
Differential Revision: D18406097
Pulled By: eellison
fbshipit-source-id: 70ed3fc4947b6237cdd6703135a988a5c13ce786
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29332
Even though we're statically typed, this can be useful, e.g. as
shorthand when iterating through a module list.
Test Plan: Imported from OSS
Differential Revision: D18393097
Pulled By: suo
fbshipit-source-id: aa42e955f88d1b8a876d0727055eb596453b9839
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29269
Hit this bug when I have an attribute of type `Optional[Tensor]` which
is initialized to None and reassigned later to some tensor.
Test Plan:
.
Imported from OSS
Differential Revision: D18364338
fbshipit-source-id: d8e1277a84ab7d80331cba83f5639469d398632e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28828
This updates torch::script::Module to more closely match the behavior
of nn.Module. In particular, it implements the (optionally recurisive)
iterators that retrieve submodules, parameters, and buffers and makes
their names match the python versions.
This also removes the individual accessors for Parameter, Module, Buffer, etc.
and replaces them with a single `attr` function which is equivalent to
writing `a.foo` in Python (`setattr` emulates `a.foo = v`).
As we build out the user-facing API for TorchScript values this will end
up matching how an attribute is accessed on general objects.
This PR preservers the python bindings for script::Module by emulating the
old API at the binding level. A followup will clean up the usage to more
directly match the C++ API.
Test Plan: Imported from OSS
Differential Revision: D18197611
Pulled By: zdevito
fbshipit-source-id: 7ee4dcbb258605d1c988314b05d938423f1ccee5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29249
This splits out all the tests that are "easy", leaving `TestJit`,
`TestScript`, the autogenerated tests, and a small docs test.
Splitting those into reasonable chunks is more effort which is less
mechanical.
Differential Revision: D18339007
Test Plan: Imported from OSS
Pulled By: suo
fbshipit-source-id: 69164b9f9a2c379fe8923a846c98dd3c37ccb70e
Summary:
Type objects in python have an attribute `__abstractmethods__` that throws when it is accessed, so we were failing with an AttributeError whenever a type was used in TorchScript.
This pr prevents that error from happening. We can't just throw when a type is used because it could be used to access a static method: https://github.com/pytorch/pytorch/pull/27163
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28053
Differential Revision: D18332347
Pulled By: eellison
fbshipit-source-id: 9c7f2220f92674ad4d903621d9762cecc566ab0d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620
All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.
When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:
- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
- Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
- Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)
Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`
The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:
- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.
Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: dreiss
Differential Revision: D18171156
Pulled By: ezyang
fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29061
It looks like we are too close to the maximum library size on
Windows. Kill Caffe2 operators to get us lower again.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: smessmer
Differential Revision: D18281083
Pulled By: ezyang
fbshipit-source-id: 8a11f9059dbf330f659bd96cc0cc2abc947723a8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28255
Add support for treating Sequentials, ModuleLists, and ModuleDicts as iterables.
As previously, when emitting a for loop over a Module Container we unroll the for loop over all elements. We require that any Sugared Value in an iterable with a Module Container have a statically - determinable length.
Otherwise, if you zipped over a list of varying length and an nn.Sequential that alternated between returning a Tensor and a Dictionary, the output type would change based on the length of the list.
Fix for #17179
And https://github.com/pytorch/pytorch/issues/27401
and https://github.com/pytorch/pytorch/issues/27506
Test Plan: Imported from OSS
Reviewed By: ZolotukhinM
Differential Revision: D18278124
Pulled By: eellison
fbshipit-source-id: aca336a5b8da89c756b1f0884883649510cbde3c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28407
Given that we do not have support for inheitance or any polymorphism
strategy yet, we should guard against user from using it until we get
the full support so that user won't confuse by the weird behaviors.
Test Plan: Imported from OSS
Differential Revision: D18284310
fbshipit-source-id: f55a224f4190d57926d91ed98f6168d787387eb8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27403
In fold_convbn pass, we need to recompute the parameter(weight, bias) for
conv, update the attribute of conv and update the access of bias in conv
because if the original conv have no bias, the `self.bias` access will be
inline and replaced by Constant node `None = prim::Constant()`, we need to
update this to use `GetAttr[name="bias"]` to make this work. But there is
also some work going on the handle constants, so we'll fix this pass after
that is done.
Test Plan:
.
Imported from OSS
Differential Revision: D18182918
fbshipit-source-id: bba510bc41ab58e0eb76f7b77335b6e3ffe2862d
Summary:
This makes MultiheadedAttention TorchScript compatible
It also breaks BC-compatibility for old models that do not have `_qkv_same_embed_dim` as an attribute.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28555
Pulled By: driazati
Differential Revision: D18124746
fbshipit-source-id: 5c5042fc6fc0e557db859a8ae05174cba5fce6a9
Summary:
Fix Slice/Select trace arguments. This PR stashes arguments to functions in order to avoid tracing them as constants.
This PR depends on a fix for select op in PR:
https://github.com/pytorch/pytorch/pull/25273
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26549
Reviewed By: hl475
Differential Revision: D17623851
Pulled By: houseroad
fbshipit-source-id: ae314004266688d2c25c5bada2dcedbfc4f39c5b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26572
Combined with isinstance specialization this allows a degree of polymorphic
functions to work without needing to use our weirder overload hacks.
We do not define any operators on Any, so the only thing you can do with it
is to put it in containers or type refine it using an isinstance check.
Any is restricted from appearing in non-argument position because we
cannot restore type tags if it ends up as a field in a class.
Test Plan: Imported from OSS
Differential Revision: D17530643
Pulled By: zdevito
fbshipit-source-id: f06f78ce84819f7773953a492f3d4c49219ee94c
Summary:
This PR fixes https://github.com/pytorch/pytorch/issues/25801 (see there for my verbose analysis).
As an example, for the following code:
```
import torch
torch.jit.script
def f1(x):
# type: (int, int) -> None
pass
```
this PR will change error message from this:
```
RuntimeError:
Number of type annotations (2) did not match the number of function parameters (1):
# type: (int, int) -> None
```
to this:
```
RuntimeError:
Number of type annotations (2) did not match the number of function parameters (1):
at __scratch__/example.py:4:0
torch.jit.script
def f1(x):
~~~~~~~~ <--- HERE
# type: (int, int) -> None
pass
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27195
Differential Revision: D17910902
Pulled By: driazati
fbshipit-source-id: af5c6353069d005752d6c7f0bd6a0c6db8437e55
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27772
This replaces unchecked_unwrap_optional with unchecked_cast. This
enables the generalization of type refinement so that it works for
isinstance checks as well. This also removes unchecked_unwrap_optional from
code we generate, which is good because it is a hard op to serialize well
since it doesn't directly encode the Optional[T] being unwrapped. In contrast,
unchecked_cast always explicitly lists the type.
Test Plan: Imported from OSS
Differential Revision: D17885424
Pulled By: zdevito
fbshipit-source-id: ce81077d6fbeaf2a802a2e0b17349aca85670466
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27773
We've changed how these functions are used over time, so I cleaned up
the header file API to match. In particular:
* tryMatchSchemas was added since the overload logic got copy/pasted
into three separate locations.
* With this change, tryMatchSchema is no longer public, as it is not needed
outside of tryMatchSchemas
* emitBuiltinFunction no longer needs a requires argument (it was always true)
* Argument order for all the schema matching stuff now puts the 'self'
builtin override last. This is only rarely used and was inconsistent with
matchSchema
Test Plan: Imported from OSS
Differential Revision: D17885425
Pulled By: zdevito
fbshipit-source-id: 064bc9fa4bd57b2e5366fff9f3c6ab9b9945e08b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27819
The idea here is to preserve the fact that `test_jit.py` contains all the JIT tests. So we import `JitTestCase`s from `jit/` into `test_jit.py` so that the test loader will find and run them when you do `python test_jit.py`. This also means that things like `-k` will work as expected.
The individual test files in `jit/` will throw if run directly, to prevent cases where the CI accidentally runs multiple versions of the same test.
Differential Revision: D17898105
Test Plan: Imported from OSS
Pulled By: suo
fbshipit-source-id: 0cd6f8421c86c90a6e1bae33a3fdbe998f570e07
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26722
Put them in a directory under jit/ to prep for test splitting
Test Plan: Imported from OSS
Differential Revision: D17550582
Pulled By: suo
fbshipit-source-id: a592b671ffe808f02d0a597d441bd98a18c9109e
Summary:
One fewer legacy decorator cluttering the test suite.
Functions relying on this decorator were updated or, in the case of test_sparse, the test suite was put back on double by default.
Note: this PR is blocked on https://github.com/pytorch/pytorch/issues/27599.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27628
Differential Revision: D17896254
Pulled By: mruberry
fbshipit-source-id: 13d460301f50ef4af7a660372432108164c0de1f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26666
Changes:
- Introduce a `ConcreteModuleType` concept. This acts both as the key into the type
cache, and as the source of truth for `ModuleValue::attr` queries. It needs
to do both jobs because that's how we ensure correctness (if the types are
different, it's because `ModuleValue::attr` would return different things).
- Now `recursive_script` will first construct a `ConcreteModuleType` and search for a
pre-existing type before starting compilation.
- All previous paths to creating a `ScriptModule` (including inheriting from
`ScriptModule`) are now rewritten to go through `create_script_module`, so
that we have only a single place where construction happens.
Behavioral changes:
- Big change to `torch.jit.ScriptModule` inheritance: all attributes are now
recursively scripted if possible, matching recursive scripting semantics.
This makes it hard to keep something from being scripted (for example, a
Python submodule). Possibly we'll need an `ignore()` type thing for
attributes. In particular, this adds `self.training` to *every* ScriptModule, since
it's present on every `nn.Module`.
- I believe this change to be transparent to existing users of the inheritance API, since if you had an attribute that is unscriptable that you never used, there is no error. In some cases, we will create new attributes (even if they are unused), which will increase serialized model size from before.
Test Plan: Imported from OSS
Differential Revision: D17551196
Pulled By: suo
fbshipit-source-id: b476d1c9feb3ddfd63406d90989aaf9dfe890591
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26665
This is actually useful. For example: in batchnorm.py, all the tracked
stats are either `nn.Parameter` or `None`. We should register them as
params if they are set, or attributes with type NoneType if they are
not.
Test Plan: Imported from OSS
Reviewed By: shannonzhu
Differential Revision: D17551197
Pulled By: suo
fbshipit-source-id: 8d6f6d76d4dab0d524c4ffdfe0c1dd465771cd00
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26499
We've changed how these functions are used over time, so I cleaned up
the header file API to match. In particular:
* tryMatchSchemas was added since the overload logic got copy/pasted
into three separate locations.
* With this change, tryMatchSchema is no longer public, as it is not needed
outside of tryMatchSchemas
* emitBuiltinFunction no longer needs a requires argument (it was always true)
* Argument order for all the schema matching stuff now puts the 'self'
builtin override last. This is only rarely used and was inconsistent with
matchSchema
Test Plan: Imported from OSS
Differential Revision: D17488297
Pulled By: zdevito
fbshipit-source-id: a32d838ce35544972fa8767557acc22149081b55
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26271
This replaces unchecked_unwrap_optional with unchecked_cast. This
enables the generalization of type refinement so that it works for
isinstance checks as well. This also removes unchecked_unwrap_optional from
code we generate, which is good because it is a hard op to serialize well
since it doesn't directly encode the Optional[T] being unwrapped. In contrast,
unchecked_cast always explicitly lists the type.
Test Plan: Imported from OSS
Differential Revision: D17412856
Pulled By: zdevito
fbshipit-source-id: ded47eb086c4610998ad92bb1174225af00220f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27515
Resoving variable names using the local activation frames does not work
when using recursive scripting, but our current code tries to do it
(incorrectly) anyway. The reason it works is only because the script
call is in the same local frame as the definition. This will not be
true in practice and makes it seem like the API works in more cases
than it really does. This forces us to always use closure-based annotations,
documents it, and it fixes the tests so that they still pass.
Test Plan: Imported from OSS
Differential Revision: D17803403
Pulled By: zdevito
fbshipit-source-id: e172559c655b05f0acf96c34f5bdc849f4e09ce2
Summary:
This PR stop common_utils.py from setting the default tensor type when it's imported. See issue https://github.com/pytorch/pytorch/issues/27355. This is a frequent source of confusion for test writers.
Many tests relied on this setting (whether they knew it or not), and this PR also updates the test suite to pass without common_utils.py setting the default tensor type. Some larger test files now set the default floating dtype themselves, however. These test files are:
- test_autograd.py
- test_distributions.py
- test_jit.py
- test_nn.py
This is still a significant improvement from today, however. First, these files set the default floating dtype much more clearly than importing it from common_utils. Second, the rest of the test suite no longer sets this globally. Third, this PR is a springboard to updating those tests, too. In particular, as tests are made generic they can be moved aways from relying on this global setting.
Notable technical changes in this PR are:
- Significant updates to test_torch.py to make it pass without setting the default floating dtype globally.
- The default_floating_dtype decorator is now defined in common_utils, a couple versions of this operator were defined in test files previously.
- test_torch-specific parts of common_utils were refactored into test_torch.
- tensor creation methods in common_utils were updated to accept an optional dtype and device.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27444
Differential Revision: D17795235
Pulled By: mruberry
fbshipit-source-id: 7f77271c0c836e69f183ad9057a2c4b29f09d2e1
Summary:
Most of this was old cruft left over from special handling of `training` before we had a `bool` type. This makes all modules have a `training` attribute that is true by default and removes all other special handling.
Fixes#26884
](https://our.intern.facebook.com/intern/diff/17728129/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27109
Pulled By: driazati
Differential Revision: D17728129
fbshipit-source-id: 8ddc9fbb07a953dd05529538bfdd01ed88b5cb57
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26770
This PR added the interface/object serialization as module attribute, to
allow initializing object as a interface type during python
initialization. Because interface type can be backed by any class object
that implements that interface, if we declare it in
python/module.__init__, we will need to collect the run time types of the
value and serialize them to ensure complete code information
Test Plan: Imported from OSS
Differential Revision: D17742707
fbshipit-source-id: 7f614ad4f982996d320a0e2dd3515bf47370e730
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27110
Previously missing methods on some types like tensors would talk about
'builtins' which are only a thing inside of the compiler. Furthermore,
the error would only occur when the builtin was applied and it was discovered
that no builtin existed. This changes the error message so that it
discovers that method on our builtin types does not exist on attribute lookup.
Test Plan: Imported from OSS
Differential Revision: D17677616
Pulled By: zdevito
fbshipit-source-id: 2f7cf6c6093a9c832569c44f4b1044a2e56fe205
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26734
This PR added the python assignment for interface as an attribute in the
module, it enables any object that implicitly inheriting the specific
interface to be able to be assigned to the interface type in python.
Serialization support for interface/class assignment will be done in the
follow up PR
Test Plan: Imported from OSS
Differential Revision: D17742708
Pulled By: wanchaol
fbshipit-source-id: a0a2d8c74b60ed3fa6c05e1b0d49b7ad1abc670b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26269
previously isinstance only worked when we could statically determine
if it were true/false. Now we actually can issue an isinstance check
in case where it is dependent on the runtime type, e.g. Optional[int]
being an instance of int. This is not very useful on its own yet,
but with type refinement and allowing Any as an argument type this will
allow for python-style "overloaded" functions such that we can
remove our __overload__ support.
Test Plan: Imported from OSS
Differential Revision: D17412853
Pulled By: zdevito
fbshipit-source-id: e2c37040f25f6b94ee1676854fceecd22de190ef
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27102
We need to prepack the quantized weight rather then original weight
Test Plan:
.
Imported from OSS
Differential Revision: D17678264
fbshipit-source-id: 50614b841cc41007affcf3df7251f042a5a97c10
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26939
Updated quant fusion patterns to work with modules with prepack
params folded into module.
Test Plan:
python test/test_jit.py 'TestJit.test_quant_fusion'
Imported from OSS
Differential Revision: D17636398
fbshipit-source-id: 8e7917e981260b81ed6038a1c2ccf19049726395
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26761
This PR serialize autograd ops into its own namespace by turning the
serialization op name into `torch.autograd.op`, this is to keep the
original code namespace rather than turning all to the global namespace,
this will be more properly handled in the future when we handle the module
namespace. This change also preserve BC until we have namespace handling
Test Plan: Imported from OSS
Differential Revision: D17645438
fbshipit-source-id: 656ec6b31d4fc2252585de73117c4d40a122678e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26579
Remove `linear_prepack` call and attach a module to the
parent class that contains the packed weight and bias,
this is to support serialization of the quantized model
since the packed weight and bias is not serializable and
we need to overwrite the `__getstate__` and `__setstate__`
function to be able to serialize them
Test Plan:
python test/test_jit.py
Imported from OSS
Differential Revision: D17636397
fbshipit-source-id: 3b81b6faa4413e4309453fd6acec2f0be6fd2f16
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26959
Add insert_pack_unpack pass for future transformations.
Only added a pattern for linear, will need to have a
pattern for conv2d as well
Test Plan:
tbd
Imported from OSS
Differential Revision: D17636400
fbshipit-source-id: 8dc64213aac0f91b55dbe3aafd92c6dce36ddd89
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26839
att
Test Plan:
ci
Imported from OSS
Differential Revision: D17643010
fbshipit-source-id: 5768b70410b7bdfdbee734d3a00296e5b1ad30d5
Summary:
Previously we did not throw if an input to `range` was a non-integer.
We also typed the result from `int ** int` as an integer but returned a float value. The return type should be a float, because if the exponent is negative `int ** int` returns a float.
Batching these two PRs together because it is easier to land and we're almost at the branch cut.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26926
Differential Revision: D17643039
Pulled By: eellison
fbshipit-source-id: b49203a9d420417e1307bbb653d2e33cd9e530e3
Summary:
Changelog:
- Selectively assign compute_uv in the at::svd used internally in the implementation of at::nuclear_norm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26303
Test Plan:
- Add tests in common_method_invocations.py
Refixes: https://github.com/pytorch/pytorch/issues/18275
Differential Revision: D17605357
Pulled By: ezyang
fbshipit-source-id: d87d60afe678e2546dca6992ea66f2daeb6b0346
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26758
This PR changes the order in which we import classes and functions so
that is is no longer necessary for them to defined in order in a file,
or for there to be proper import statements in the exported file.
Actually importing a function/class now is driven by the need to resolve
the entity during unpickling, type resolution, or value resolution.
While this should allow significant simplification to the code that
serializes classes, this work has not been done yet in order to avoid
inevitable forward compat issues in the transition period.
Notes:
* Individual functions have been replaced with a SourceImporter object
that exposes a resolveType method. This method loads the type if
it has not been loaded yet, potentially parsing (but not loading)
the file it exists in if that file hasn't been parsed yet.
* Some legacy functionality needed to be added as a method to this object
since the old format still used some of this logic for class resolution.
Test Plan: Imported from OSS
Differential Revision: D17558989
Pulled By: zdevito
fbshipit-source-id: 7eae3470bcbd388c4de463e3462d527776ed46c6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26453
Previously, schema matching would incorrectly widen typevar bindings
when later occurrences were supertypes of earlier ones. This allowed
callsites like `floatlist.append(tensor.item())` to pass the typechecker,
causing a runtime assert (issue #24856).
An earlier, reverted fix (#25136) insisted on strict equality across all
occurrences of a typevar, necessitating explicit casts around Scalar-typed
arguments to int- or float-typed parameters, like `tensor.item()` above.
This was per the original type system design, but turned out to break
existing user code that relied on the de facto dynamic downcast. (The
error required a specialized list representation.)
The current fix includes the prevention of typevar widening, but
adds logic to insert implicit conversions from Scalar to float or int
as needed to satisfy a matched schema.
Test Plan: Imported from OSS
Differential Revision: D17470598
Pulled By: bhosmer
fbshipit-source-id: d260dbf3cd78b9c2f2229bc61afc84e1910b5659
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26581
We're currently inlining immediate values of the constants directly into
IR when we generate it providing no way to access these values by their
names later. This change registers such values as atrtibutes of the
module so that they are not lost after IR generation.
Differential Revision: D17513451
Test Plan: Imported from OSS
Pulled By: ZolotukhinM
fbshipit-source-id: cf8f9b450e7178692211abd905ffd2d7ce5a6ce1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26680
This was introduced before under the assumption that we'll have a qconv_per_tensor_affine
and a qconv_per_channel_affine, but turns out we don't have these, so we'll remove
thse functions.
Test Plan:
python test/test_jit.py 'TestJit.test_quant_fusion'
Imported from OSS
Differential Revision: D17542607
fbshipit-source-id: b90ce5738170f0922bdc2eb1c4dbecd930f68a48
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26675
Based on offline poll, we're very unlikely to have multi-axis quantized tensors in the foreseeable future. Let's simplify API and just return int instead of list. It also matches the singular `axis` name.
Test Plan: Imported from OSS
Differential Revision: D17537052
Pulled By: dzhulgakov
fbshipit-source-id: 676abc3b251d288468aaed467b5e5ca4063b98b0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26145
This is step towards isinstance type refinement.
It primarily does yak shaving in compiler.cpp to unify the handling
of special case behavior that occurs in conditional expressions:
* Handling type refinement as part of emission.
* Handling `is None` static-if specialization.
It introduces a CondValue object that is a Value that also has
additional type refinements that are true when that Value is true,
and potentialy a static-true/false value that, if set, will cause if
statements to be handled statically, omitting typechecking of the other side.
This ends up expanding some behavior, for instance `is None` specialization
used to happen only for single expressions, but now works through
boolean logic.
Test Plan: Imported from OSS
Differential Revision: D17359500
Pulled By: zdevito
fbshipit-source-id: ce93804496c8b4c3197a5966bc28c608465fda64
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26339
Serializes per-channel tensor in both torch.serialization and jit. Since we didn't bind Quantizer properly yet, I chose to save a tuple representing quantizer settings. To avoid recursive tensor serialization calls, I'm using tuple instead of tensor to store scales and zero points.
driazati - please check the serialization logic. Is there a good test that compares that JIT serialization and python serialization are equivalent? (I haven't tested it yet)
Test Plan: Imported from OSS
Differential Revision: D17443222
Pulled By: dzhulgakov
fbshipit-source-id: a34758de1ffd2ec1cdc5355f5baf95284a4ccf4b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26576
to match `quantize_per_tensor`
Test Plan:
ci
Imported from OSS
Differential Revision: D17517439
fbshipit-source-id: 8c20f9b5d2a50d0e42e4444994b0987e6204ac56
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26425
Currently the scalar type is hardcoded for weight and normal tensor
but what we want is to get it from corresponding observer module
Test Plan:
there are some known issues right now,
will test e2e later when all the issues are fixed
Imported from OSS
Differential Revision: D17504459
fbshipit-source-id: f5a21789c2ebeb60bff4acc777db80170063c9f8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26574
Since we also have `quantized::linear`, `quantize_linear` sounds
confusing, so we plan to rename it before the branch cut
Test Plan:
ci
Imported from OSS
Differential Revision: D17514876
fbshipit-source-id: 01d9005e6ec8cb9950b9d8bba122109c389641d3
Summary:
When used as annotations on Python functions, `NamedTuple`s go through our Python annotation -> type mapping which previously had no way of lookup up `NamedTuple`s (which are created lazily by checking if the type has certain properties, so the lookup is creating the `TupleType` from scratch). This PR threads through the necessary data to make them work.
Fixes#26437
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26443
Pulled By: driazati
Differential Revision: D17486441
fbshipit-source-id: a6bbb543ff05a5abe61f1a7f68db9ecdb652b358
Summary:
If the `Union` contains a non-class type, `issubclass` would fail, this
adds a check for that case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26312
Pulled By: driazati
Differential Revision: D17486465
fbshipit-source-id: c513cef3bbc038f15c021eb0c1bf36be0df1eb90
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26515
Fix patterns of `prepack` and `permute` after recent changes
to `quantized::conv2d` and `quantized::conv2d_prepack`
Test Plan:
python test/test_jit.py 'TestJit.test_quant_fusion'
Imported from OSS
Differential Revision: D17502573
fbshipit-source-id: 1a719fd610e8ea9dc16075abaa042556e1edbceb
Summary:
test_wrapped_number was calling torch.set_default_tensor_type('torch.FloatTensor'), which was setting the default tensor types for all following tests until a class boundary (with unittest) or until end of file (with pytest). Tests that don't expect the default tensor type to be set this way were then failing if run afterwards.
This fixes the issue by copying the default_tensor_type decorator from test_nn and using that instead with test_wrapped_number. The decorator correctly resets the default tensor type after the test has run.
This fixes the many errors encountered when running pytest test_jit.py.
Note: test_wrapped_number was introduced in https://github.com/pytorch/pytorch/issues/22273.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26523
Differential Revision: D17495283
Pulled By: mruberry
fbshipit-source-id: ab518c78b7706af7cb1c2d1c17823d311178996d
Summary:
In schema matching we allow a homogenous tuple to be matched to list arguments. This logic wasn't yet extended for vartype lists, causing stuff like `len((1, 2, 3))` to fail.
Fix for https://github.com/pytorch/pytorch/issues/20500
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25944
Differential Revision: D17482510
Pulled By: eellison
fbshipit-source-id: aa63318c27a01d965a7a7b68ce8bec638168dc26
Summary:
Makes c10::Dict Ordered and bins binds the OrderedDict() and dict() constructor into torchscript. For the case of the empty constructor dict() i typed it as [str, Tensor] because:
• we're almost dropping support for python 2, at which point all dicts are ordered
• then it's more conventional to write x : Dict[int, int] = {} which is already supported
• It is possible to construct an arbitrarily typed empty OrderedDict through
OrderedDict(torch.jit.annotate(List[Tuple[key, value]], [])
We could consider dropping the no inputs aten::dict constructor since then the types would be more explicit.
This replaces https://github.com/pytorch/pytorch/issues/26170 and https://github.com/pytorch/pytorch/pull/26372 b/c ghstack was poisioned and i had to resubmit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26465
Differential Revision: D17481604
Pulled By: eellison
fbshipit-source-id: d2d49795a518c3489881afac45d070e5262c5849
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26415
We do dynamic quantization for bias right now, remove this in pattern
Test Plan:
python test/test_jit.py 'TestJit.test_quant_fusion'
Imported from OSS
Differential Revision: D17465555
fbshipit-source-id: 5e229cbc6ae85ea4ce727b3479993d79747d7792
Summary:
Follow up to https://github.com/pytorch/pytorch/pull/25664, add `class_type[ind] = val`. Like `__getitem__`, `__setitem__` has a custom compilation path so it wasn't added with the rest of the magic methods.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25750
Differential Revision: D17428725
Pulled By: eellison
fbshipit-source-id: ff3767ef41515baf04b0c0f5c896dbd3f1d20cd3
Summary:
In schema matching we allow a homogenous tuple to be matched to list arguments. This logic wasn't yet extended for vartype lists, causing stuff like `len((1, 2, 3))` to fail.
Fix for https://github.com/pytorch/pytorch/issues/20500
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25944
Differential Revision: D17431514
Pulled By: eellison
fbshipit-source-id: 2ad98bab15eaa496471df651572735eb35183323
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26204
Support quant fusion for `matmul` with bias to `quantized::linear`.
Test Plan:
python test/test_jit.py 'TestJit.test_quant_fusion'
Imported from OSS
Differential Revision: D17380073
fbshipit-source-id: 00014469a852cc5d5b66469fc4b8d05eafba1e3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25974
Previously we observe all the Tensor values, but what we want is actually
observing only the ones that can be quantized.
Test Plan:
python test/test_jit.py
python test/test_quantizer.py
Imported from OSS
Differential Revision: D17348986
fbshipit-source-id: 55be0d73862a0e7eb1e7fd882d16e0d830618b63
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25625
We want to fold the quantize op for weights/bias into module to avoid quantizing weights on the fly.
Test Plan:
python test/test_jit.py
Imported from OSS
Differential Revision: D17208889
fbshipit-source-id: 1854b8953b065855d210bc1166533c08ca264354
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26106
Previously, in the named tensors build, an operator is marked as
non-traceable if ANY of its overloads are named tensor overloads. This
breaks the tracer for things like torch.full (has a names= overload for
named tensor) and tensor.sum (has a Dimname overload for named tensor).
This PR fixes the problem by putting the "no tracer support" logic into
the location where the tracer attempts to construct a graph by adding a
Dimname/DimnameList argument to a node.
Test Plan:
- new test in test_jit.py to check if torch.full is traceable
- new test in test_namedtensor.py to check what happens when someone
tries to trace a function that uses named tensor APIs.
- [namedtensor ci]
Differential Revision: D17353452
Pulled By: zou3519
fbshipit-source-id: b0b843c8357ffe54baee6e8df86db914f0b1ece4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25624
First fuse the splitted op into aten::linear and then fuse
`dequant - aten::linear - quant` into quantized linear op
Test Plan:
python test/test_jit.py 'TestJit.quant_fusion'
Imported from OSS
Differential Revision: D17208891
fbshipit-source-id: 864b19fabab2e8e6f8f8ad35eb3dbbf2d5fdb8c4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25623
Port over fuse_linear pass from pytorch/tvm project, we'll need this
in backend specific quantization pass to match aten::linear and swap
it with quantized linear
Test Plan:
python test/test_jit.py 'TestJit.test_fuse_linear'
Imported from OSS
Differential Revision: D17208890
fbshipit-source-id: f4ff3889ae4525797d3b986f46ae37e50ea49116
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25505
Support for quantizing all the methods called by forward method, including
child module methods and other methods in the current module
It relies on module level constant prop, we need to figure out a way to do constant prop
for these methods as well. We can either do constant prop in the module level or do constant
prop in the quantization function, but this will need some discussion.
Test Plan:
python test/test_jit.py 'TestJit.insert_quant_dequant'
python test/test_quantizer.py
Imported from OSS
Differential Revision: D17208887
fbshipit-source-id: 21749457b21b00a6edada290c26324e2fb210b10
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25504
Skip inserting duplicate observers for values observed
in forward method of a child module or other methods in
the current module.
Test Plan:
python test/test_jit.py -- 'TestJit.insert_observers'
python test/test_jit.py -- 'TestJit.insert_observers_child_qconfig'
python test/test_jit.py -- 'TestJit.insert_observers_skip_values'
Imported from OSS
Differential Revision: D17208888
fbshipit-source-id: e04f1c22ab1c4f410933a17a3ef31acf5f217323
Summary:
These unit tests pass after landing all the warp size awareness patches.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25963
Differential Revision: D17319124
Pulled By: bddppq
fbshipit-source-id: 22f5d5f1ca9c67e66a7ccf983b2d2f889a74e729
Summary:
Add support for nn.ModuleDict in script. This is needed to support torchvision.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25715
Differential Revision: D17301826
Pulled By: eellison
fbshipit-source-id: 541b5477e980f519a8c3bbb1be91dac227f6d00f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25263
This adds an api to return true in script and false in eager, which together with ignore allows guarding of not yet supported JIT features. Bikeshedding requested please.
cc zou3519
```
def foo():
if not torch.jit.is_scripting():
return torch.linear(...)
else:
return addmm(...)
```
Test Plan: Imported from OSS
Differential Revision: D17272443
Pulled By: eellison
fbshipit-source-id: de0f769c7eaae91de0007b98969183df93a91f42
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25428
Added bias as an optional param to the quantized_linear_prepack function.
Bias is quantized during runtime using input scale and weight scale.
ghstack-source-id: 89601399
Test Plan: python test/run_test.py --exclude nn --verbose --bring-to-front quantization quantized quantized_tensor quantized_nn_mods quantizer
Differential Revision: D17121304
fbshipit-source-id: 8adb0e55e4aed0a5430aaa2c8639c8ad1639c85a
Summary:
Improve handling of mixed-type tensor operations.
This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).
For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.
The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst
Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.
See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273
Reviewed By: gchanan
Differential Revision: D16582230
Pulled By: nairbv
fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
Summary:
Add magic method for `class_type[index]`. Since the compiler has custom logic for indexing this was not included with the other magic methods.
Fix for https://github.com/pytorch/pytorch/issues/25637
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25664
Differential Revision: D17214996
Pulled By: eellison
fbshipit-source-id: bf77f70851f6c3487147da710cc996624492a0c8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25503
Previously we only insert observers for forward methods, this PR
extends the support to all observers. It will insert
duplicated observers right now, we'll remove them in next PR.
Test Plan:
python test/test_jit.py -- 'TestJit.insert_observers'
Imported from OSS
Differential Revision: D17208886
fbshipit-source-id: 04084c8f42c56cb66a11968987a15752f532ac04
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25262
Preserve the type of ignore'd functions on serialization. Currently we first compile an ignore'd function with it's annotated type when first compiling, but do not preserve it. This is important for being able to compile models with not-yet-supported features in JIT.
```
torch.jit.ignore
def unsupported(x):
return x
def foo():
if not torch.jit._is_scripting():
return torch.linear(...)
else:
return unsupported(...)
```
Test Plan: Imported from OSS
Reviewed By: driazati
Differential Revision: D17199043
Pulled By: eellison
fbshipit-source-id: 1196fd94c207b9fbee1087e4b2ef7d4656a6647f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25678
As an effort to unify fbgemm and qnnpack at the dispatcher level, we need to have a generic name for the quantized backed ops.
Currently FBGEMM is guarded by the USE_FBGEMM macro and QNNPACK uses USE_QNNPACK.
ghstack-source-id: 89518961
Test Plan: buck test caffe2/test:quantized
Differential Revision: D17194364
fbshipit-source-id: 5960aedff6b8cb89eb3872c39b74caf54c0fbf20
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25338
As an effort to unify fbgemm and qnnpack at the dispatcher level, we need to have a generic name for the quantized backed ops.
Currently FBGEMM is guarded by the USE_FBGEMM macro and QNNPACK uses USE_QNNPACK.
TBD: Use compile time macro or run_time to switch between fbgemm and qnnpack.
ghstack-source-id: 89454244
Test Plan: buck test caffe2/test:quantized
Differential Revision: D17097735
fbshipit-source-id: 447112a7a421387724d3e29b8fd8412dfb1c373a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25361
Previously we had a different None object for each type T so that
unwrap optional could still recover the type T from it. After a few
months of having this conversion behavior, it has become clear that
only the unwrap optional operators cause this problem. Furthermore, it
is beneficial to have NoneType <: Optional[T] because this is how IValues
work (in particular the None IValue is not tagged). This patch makes the
necessary changes to do this. In particular it special cases unwrap optional
in export so that it annotates the None to make sure we can recover the type.
This also changes how matching and evaluating type values work so that we
can consider None matchable to type Optional[T], eventhough we cannot
derive T from that match.
Test Plan: Imported from OSS
Differential Revision: D17103072
Pulled By: zdevito
fbshipit-source-id: 37678ed3e5ce54f2eb3ee4dff2734a39f0bee028
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25440
See the comments deleted for what this PR is all about
Test Plan: Imported from OSS
Differential Revision: D17125690
Pulled By: suo
fbshipit-source-id: a4a2f541a3e161f9c15b51df475130e7bf683cf8
Summary:
Doesn't really add much functionality, since inputs to `tuple()` which we can statically infer the output size is pretty much just tuples. Does improve the error message though.
Fix for https://github.com/pytorch/pytorch/issues/24000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25474
Differential Revision: D17133800
Pulled By: eellison
fbshipit-source-id: 41a052895e6ed24a384ec6f8aef0a6769ac094e6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25089
Previously, when the tracer encountered a scripted function (or method), it
inlined the function into the graph. Now, we emit a CallFunction or
CallMethod node instead.
Test Plan: Imported from OSS
Reviewed By: zdevito
Differential Revision: D16987936
Pulled By: suo
fbshipit-source-id: a3e38a4621f3504909ec0542865dc7e381c243d6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25425
1. Properly invalidate memory locations when we change the points-to
set.
2. Don't build a new indexToElementMap in toString(), just use
`MemoryDag::fromIndex`
3. Fix transitive wildcard assignment
Test Plan: Imported from OSS
Differential Revision: D17126402
Pulled By: suo
fbshipit-source-id: cbd99027d2e78fd333dbf030172d3b7ac4df8349
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25281
We want to skip inserting observers for the Tensors that's between the two
ops that will be fused, e.g. Conv -> ReLU, this PR just added this pattern,
but new patterns can be easily added in the future.
Test Plan:
python test test/test_jit.py -- 'TestJit.test_insert_observers_skip_values'
Imported from OSS
Differential Revision: D17106037
fbshipit-source-id: 49697f4d9598a461edc62a2b4148495764a99574
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25282
For now it will be used in quantization, but it can be used as a
standalone pass too.
Couple of things are not finished at this moment:
- Batchnorm.eps value is hardcoded. This is bad and wrong, but we cannot
access fields listed in __constants__ from IR now. Once we fix this, we
should remove the hardcoded value.
- We do not remove Batchnorm submodules from the parent module even when
they were merged into a Conv. Once we figure out API for removing
attributes and modules, we should fix this.
Test Plan: Imported from OSS
Differential Revision: D17086611
Pulled By: ZolotukhinM
fbshipit-source-id: d58a947a3b2205d8f3629d693b70b9ad2b5a9102
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25069
This PR changes the API of insert_observers to use qconfig_dict,
full functionality support will come in later PRs
Test Plan:
```
python test/test_quantizer.py
python test/test_jit.py
```
Imported from OSS
Differential Revision: D17001135
fbshipit-source-id: 16df6fa521fcc0c9e268a375be8e1a630e77011a
Summary:
Don't throw in constant propagation, since the op we're running may not be reached. Previously we would only only catch `C10::Error`; however it's hard to maintain that the entire codebase doesn't throw any other types of errors, and some errors map nicely to python errors, like `std::index_error` to IndexError.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25270
Differential Revision: D17102545
Pulled By: eellison
fbshipit-source-id: 9fd485821743ad882e5c6fc912ca47b0b001b0e9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25228
This adds a facility to isSubtypeOf for it to explain why a type is
not a subtype of something else. It is used in situations where it
is not clear from the types python_str alone why the relationship
is now true. Because of subtle interaction between default arguments,
overloads, and virtual methods, it uses isSubtypeOfExt for the extended
version to avoid requiring readers to understand the interaction.
Test Plan: Imported from OSS
Differential Revision: D17066673
Pulled By: zdevito
fbshipit-source-id: 4de7c40fbf7f9eeae045d33a89a038538cf87155
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25227
Adds cases to NamedType serialization to so that interfaces are written.
Similar implementation to NamedTuples
Test Plan: Imported from OSS
Differential Revision: D17066674
Pulled By: zdevito
fbshipit-source-id: fda5419260fad29e8c4ddb92de1d3447d621d982
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25258
this is the first commit in a series to add interfaces to JIT.
Interfaces allow the specification through a blank python class of an
abstract interface that can be used in type annotations for Script functions.
If a TorchScript class implements all the methods in the interface with
the appropriate types, then it is implicitly considered to implement
that interface.
Follows required:
* implementation of serialization
* implementation in the parser frontend
* better error reporting for explaining why a class does not meet an
interface specification.
Test Plan: Imported from OSS
Differential Revision: D17079963
Pulled By: zdevito
fbshipit-source-id: a9986eeba2d4fdedd0064ce7d459c0251480a5a0
Summary:
When a closure was declared that always throw'd we would erroneously propagate the ExitThrows status to the block in which it was declared, causing us to remove the subsequent code in the block. [this code](https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/script/exit_transforms.cpp#L462) was meant to handle this case, however it didn't handle the case when we were transforming Loops and the prim::Function wasn't a target block.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25278
Differential Revision: D17084780
Pulled By: eellison
fbshipit-source-id: ee31a4cc243653f615e4607ece29cdac8ef5710e