This PR adds the ability to pad tensor strides during lowering. The goal is to make sure (if possible) tensors with bad shape can have aligned strides so GPU can access the memory more efficiently.
By testing BlenderbotSmallForConditionalGeneration I already see 2.5ms speedup.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120758
Approved by: https://github.com/jansel
Given the following code/dynamo graph:
```
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
_print = torch.ops.aten._print('moo')
res = l_x_ + l_x_; l_x_ = None
_print_1 = torch.ops.aten._print('moo')
return (res,)
```
AOTAutograd will trace the following program, threading tokens from the inputs, through the effectful operator calls (torch.ops.aten._print), and as an output:
```
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: "f32[0]", arg1_1: "f32[2, 3]"):
with_effects = torch._higher_order_ops.effects.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
return (getitem_2, add)
```
However when we get to inductor, since we want the inductor generated code to not have any token inputs/outputs for better readability, we want to modify the aten graph by removing the tokens from inputs, and creating them through `torch.ops.aten._make_dep_token`, and sinking them through the `torch.ops.aten._sink_tokens` operators.
This has to be done *after* the partitioner, otherwise the partitioner will add the make_token/sink_token operators to the backwards graph.
```
class <lambda>(torch.nn.Module):
def forward(self, arg1_1: "f32[2, 3]"):
_make_dep_token_default: "f32[0]" = torch.ops.aten._make_dep_token.default()
with_effects = torch._higher_order_ops.effects.with_effects(_make_dep_token_default, torch.ops.aten._print.default, 'moo'); _make_dep_token_default = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
_sink_tokens_default = torch.ops.aten._sink_tokens.default((getitem_2,)); getitem_2 = None
return (add,)
```
When doing inductor lowering, we convert `with_effects` calls to an `EffectfulKernel`, which just a `FallbackKernel` but with a pointer to previous effectful operator's call. During scheduling, we will create a `StarDep` between the EffectfulKernel and its previous EffectfulKernel so that they don't get reordered. The inductor generated python code looks like:
```
def call(args):
arg1_1, = args
args.clear()
assert_size_stride(arg1_1, (2, 3), (3, 1))
# Source Nodes: [_print], Original ATen: []
buf2 = aten._print.default('moo')
# Source Nodes: [_print_1], Original ATen: []
buf3 = aten._print.default('moo')
buf4 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
cpp_fused_add_0(arg1_1, buf4)
del arg1_1
return (buf4, )
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122347
Approved by: https://github.com/bdhirsh
After we codegen a triton kernel in the triton codegen backend,
we cache the generated triton source code in the wrapper to avoid
producing multiple triton kernels with the same content.
In AOTI compilation flow, this caching mechanism imposes a strong requirement
on the codegen that we must generate the same triton source code
for the same schedule node in both python and cpp codegen phases.
Otherwise, we would end up with a mismatch between the kernel name
formed in the cpp codegen and the cuda kernel key produced from
the python codegen. Consequently, we would hit an missing-cuda-kernel
error.
The precomputed symbol replacements saved in V.graph.sizevars
can cause such source-code inconsistency related to the code for indexing
tensors. For example, let's say in the python codegen phase,
we produce "ks2\*48" as part of indexing an input for schedule
node A while yielding a replacement pair "ks0 -> ks2\*48" in
the precomputed replacements. In the second cpp codegen phase,
we would produce "ks0" for the same indexing code of schedule
node A due to the "ks0 -> ks2*48" replacement pair.
This PR fixed the issue by clearing precomputed_replacements
and inv_precomputed_replacements before cpp wrapper codegen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123136
Approved by: https://github.com/desertfire
Summary: CPP wrapper compilation is currently done in two passes: in the first pass, Python wrapper is generated and run to compile Triton kernels as a side effect, in the second pass C++ wrapper is generated and compiled. When model inputs are mutated, running the Python wrapper in the first pass mutates the inputs, although the first pass (including the Python wrapper run) is strictly a part of the compilation process, hence must not introduce any side effects on the example inputs.
In this PR, we clone mutated inputs in the first pass to avoid input mutation.
Fixes https://github.com/pytorch/pytorch/issues/117364.
Test Plan:
```
$ TORCHINDUCTOR_CPP_WRAPPER=1 python test/inductor/test_torchinductor.py -k test_inductor_layout_optimization_input_mutations_cuda
...
.
----------------------------------------------------------------------
Ran 1 test in 6.368s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123316
Approved by: https://github.com/jansel, https://github.com/chenyang78, https://github.com/desertfire
As the design in RFC https://github.com/pytorch/pytorch/issues/114856, this PR implemented Intel GPU Inductor backend by:
- Reuse WrapperCodegen and TritonScheduling for python wrapper and kernel code generation. And implenented device-specific code generation in XPUDeviceOpOverrides
- Reuse fx_pass, lowering, codecache, triton kernel auto-tuning, and compilation.
For the test case, this PR provided test/inductor/test_xpu_basic.py for basic inductor backend functionality testing.
We'll reuse all the existing Inductor test case in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121895
Approved by: https://github.com/EikanWang, https://github.com/jansel, https://github.com/desertfire
After we codegen a triton kernel in the triton codegen backend,
we cache the generated triton source code in the wrapper to avoid
producing multiple triton kernels with the same content.
In AOTI compilation flow, this caching mechanism imposes a strong requirement
on the codegen that we must generate the same triton source code
for the same schedule node in both python and cpp codegen phases.
Otherwise, we would end up with a mismatch between the kernel name
formed in the cpp codegen and the cuda kernel key produced from
the python codegen. Consequently, we would hit an missing-cuda-kernel
error.
The precomputed symbol replacements saved in V.graph.sizevars
can cause such source-code inconsistency related to the code for indexing
tensors. For example, let's say in the python codegen phase,
we produce "ks2\*48" as part of indexing an input for schedule
node A while yielding a replacement pair "ks0 -> ks2\*48" in
the precomputed replacements. In the second cpp codegen phase,
we would produce "ks0" for the same indexing code of schedule
node A due to the "ks0 -> ks2*48" replacement pair.
This PR fixed the issue by clearing precomputed_replacements
and inv_precomputed_replacements before cpp wrapper codegen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123136
Approved by: https://github.com/desertfire
After we codegen a triton kernel in the triton codegen backend,
we cache the generated triton source code in the wrapper to avoid
producing multiple triton kernels with the same content.
In AOTI compilation flow, this caching mechanism imposes a strong requirement
on the codegen that we must generate the same triton source code
for the same schedule node in both python and cpp codegen phases.
Otherwise, we would end up with a mismatch between the kernel name
formed in the cpp codegen and the cuda kernel key produced from
the python codegen. Consequently, we would hit an missing-cuda-kernel
error.
The precomputed symbol replacements saved in V.graph.sizevars
can cause such source-code inconsistency related to the code for indexing
tensors. For example, let's say in the python codegen phase,
we produce "ks2\*48" as part of indexing an input for schedule
node A while yielding a replacement pair "ks0 -> ks2\*48" in
the precomputed replacements. In the second cpp codegen phase,
we would produce "ks0" for the same indexing code of schedule
node A due to the "ks0 -> ks2*48" replacement pair.
This PR fixed the issue by clearing precomputed_replacements
and inv_precomputed_replacements before cpp wrapper codegen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122882
Approved by: https://github.com/desertfire
Summary: `torch.while_loop` HOP support is added to JIT Inductor. The test coverage is limited due to the functionality constraints of the upstream `torch.while_loop` op in Dynamo / Export. When those are lifted, we'll add more tests (see TODO-s in the test file).
AOT Inductor support will be added in a follow-up PR.
Test Plan:
```
$ python test/inductor/test_control_flow.py
...
----------------------------------------------------------------------
Ran 38 tests in 159.387s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122069
Approved by: https://github.com/jansel, https://github.com/eellison
Summary: In this PR, `torch.cond` support and the necessary codegening infrastructure is added to C++ wrapper (AOTInductor and friends).
Notable additions:
- A new mechanism in the Python wrapper codegen to precompile and save the Triton kernels (generated and user-defined) which haven't been covered by the active path through the control flow given the sample inputs. As we can't do the runtime autotuning of the kernels outside the active path, we precompile and save them with the `launchers[0]` (corresponding to the first config).
- Codegen infra for `torch.cond` in the C++ wrapper (ABI- and non-ABI-compatible). The `torch.cond` codegen has been slightly refactored to avoid duplication across the Python and C++ wrappers.
- More extensions of the caching sites in the wrapper code to cache per codegened graph (e.g., `codegen_int_array_var`) + some infra for tracking the current codegened graph in the wrapper (both during codegen-ing in the `Scheduler.codegen` and in the `WrapperCodeGen.generate` functions).
- New unit tests to cover the added AOT Inductor + `torch.cond` functionality.
Codegen examples from the new unit tests:
- [`test_cond_simple_abi_compatible_cpu`](https://gist.github.com/aakhundov/862d5de9aa460f5df399e1387f7b342e)
- [`test_cond_simple_abi_compatible_cuda`](https://gist.github.com/aakhundov/d70b81f95fa8cc768cedef9acacb25bb)
- [`test_cond_simple_non_abi_compatible_cpu`](https://gist.github.com/aakhundov/c0ae7a8cbb6fa311c838e1b580f9a3f6)
- [`test_cond_simple_non_abi_compatible_cuda`](https://gist.github.com/aakhundov/08b945d4e8a32c97b7f9ff6272f4a223)
- [`test_cond_nested_abi_compatible_cuda`](https://gist.github.com/aakhundov/ce664f433c53e010ce4c0d96a6c13711)
- [`test_cond_with_parameters_abi_compatible_cuda`](https://gist.github.com/aakhundov/77afbeb8eaab5c5b930a3f922a7baf12)
- [`test_cond_with_multiple_outputs_abi_compatible_cuda`](https://gist.github.com/aakhundov/8cc06105ec8a3fe88be09b3f6e32c690)
Test Plan:
```
$ python test/inductor/test_aot_inductor.py -k test_cond
...
----------------------------------------------------------------------
Ran 42 tests in 170.619s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121120
Approved by: https://github.com/jansel, https://github.com/chenyang78
**description**
Enable lowering of dynamic qlinear for X86Inductor. The pattern is `choose_qparams -> getitem -> q -> dq -> linear`. We only fuse `dq -> linear` and get `choose_qparams -> getitem -> q -> onednn.qlinear_pointwise`. So, we treat it as dynamic quantization of activation + static quantized linear.
The previous implementation of `onednn.qlinear_pointwise` is for the case where `x_scale` and `x_zp` are scalars. Since `choose_qparams` returns tensors, we added a variation `onednn.qlinear_pointwise.tensor` to support the case.
This feature is targeting PyTorch 2.3 release.
**Test plan**
```
python inductor/test_mkldnn_pattern_matcher.py -k test_dynamic_qlinear_cpu
python inductor/test_mkldnn_pattern_matcher.py -k test_dynamic_qlinear_qat_cpu
python inductor/test_cpu_cpp_wrapper.py -k test_dynamic_qlinear
```
**Performance before and after lowering `choose_qparam` to Inductor**
Before
- latency for shape (32, 32) = 0.151 ms
latency for shape (128, 128) = 0.153 ms
latency for shape (1024, 1024) = 0.247 ms
After
- latency for shape (32, 32) = 0.049 ms
- latency for shape (128, 128) = 0.052 ms
- latency for shape (1024, 1024) = 0.133 ms
Test method: A module with a single Linear layer, dynamic-quantize, lower to X86Inductor
Test env & config: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz, single instance, single core, using Intel OpenMP and Tcmalloc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120605
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5, https://github.com/jerryzh168
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)
We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan
When compiling an deserialized ExportedProgram, constant’s original_fqn is not populated(). Highlighted line is missing, And a latter assertion is breaking due to original_fqn missing.
```
constants_info_[0].name = "L__self___w_pre";
constants_info_[0].dtype = static_cast<int32_t>(cached_torch_dtype_float32);
constants_info_[0].offset = 0;
constants_info_[0].data_size = 64;
constants_info_[0].from_folded = false;
constants_info_[0].shape = {4, 4};
constants_info_[0].stride = {4, 1};
// constants_info_[0].original_fqn = "w_pre"; // this line is missing
```
Inductor is relying `dynamo_flat_name_to_original_fqn` to populate the original_fqn field. This field originates from `graph_module.meta["dynamo_flat_name_to_original_fqn"]`, and is set during dynamo tracing. However, when compiling
an deserialized ExportedProgram, we don't do dynamo tracing, thus this field is missing.
As a fix, I maintain AOTI's own mapping for constant tensor's fqn.
Differential Revision: D54097073
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120524
Approved by: https://github.com/chenyang78
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
Summary: `torch.cond` is already supported in Dynamo and Export: the `true_fn` and `false_fn` subgraphs are traced as child fx graphs of the main graph and passed to the `torch.cond` higher-order operator in the fx graph. However, this breaks in Inductor, as the latter doesn't have the ways of dealing with child fx subgraphs and properly lowering and codegen-ing them.
In this PR, we add `torch.cond` support in Inductor. This is achieved by adding subgraph lowering and codegen-ing infrastructure as well as new `Conditional` IR node type weaving the parent graph with the true and false child subgraphs.
Here we only implement `torch.cond` support in JIT Inductor (Python wrapper codegen). The implementation in AOT Inductor (C++ wrapper codegen), including ABI-compatibility mode, will follow.
Test Plan:
```
$ python test/inductor/test_control_flow.py
...
----------------------------------------------------------------------
Ran 24 tests in 86.790s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119759
Approved by: https://github.com/jansel, https://github.com/eellison
Make multi-kernel work with cpp-wrapper. multi-kernel generates two equivalent variants for a reduction. At runtime the faster one is picked. But cpp-wrapper need save cubin file during codegen. They don't work with each other at the beginning.
Thanks Jason for suggesting a neat way to integrate these two. cpp-wrapper does 2 passes codegen right now. For the first pass, we still generate multi-kernel code and run it; for the second pass, we load the cubin file for the faster kernel directly. And multi-kernel python code is not generated for the second pass since they should not be needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117813
Approved by: https://github.com/jansel
Make multi-kernel work with cpp-wrapper. multi-kernel generates two equivalent variants for a reduction. At runtime the faster one is picked. But cpp-wrapper need save cubin file during codegen. They don't work with each other at the beginning.
Thanks Jason for suggesting a neat way to integrate these two. cpp-wrapper does 2 passes codegen right now. For the first pass, we still generate multi-kernel code and run it; for the second pass, we load the cubin file for the faster kernel directly. And multi-kernel python code is not generated for the second pass since they should not be needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117813
Approved by: https://github.com/jansel
Make multi-kernel work with cpp-wrapper. multi-kernel generates two equivalent variants for a reduction. At runtime the faster one is picked. But cpp-wrapper need save cubin file during codegen. They don't work with each other at the beginning.
Thanks Jason for suggesting a neat way to integrate these two. cpp-wrapper does 2 passes codegen right now. For the first pass, we still generate multi-kernel code and run it; for the second pass, we load the cubin file for the faster kernel directly. And multi-kernel python code is not generated for the second pass since they should not be needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117813
Approved by: https://github.com/jansel
Summary:
Add Runtime Constant-folding for AOTInductor.
This also include the invocation of constant folding at load time.
The constant folding lowering is a 2-step process.
First, we split the graph into 2 modules, one of it is the constant module, which doesn't depend on any input and the whole module could be inferred (constant-folded) one-time and be reused. The constant module, is lowered, and being codegen-ed as usual and cached (let's call this constant code). The constant code reuses the whole lowering/profiling/etc. process, only difference is that we do not generate any headers or initialization for the constant code.
Second, after handling the constant module, we take care of the main module (which is the part that would depend on the user input.) For the main module, we take in one additional component, the constant code, compare with a normal lowering. Addition step we do here is that, we inject the constant code into the codegen-ed main module, and create the caller for the main module to consume the result of the constant module.
Test Plan: Unit tests included in commit.
Differential Revision: D53274382
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118765
Approved by: https://github.com/chenyang78
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Co-authored-by: Catherine Lee <csl@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519