Commit Graph

312 Commits

Author SHA1 Message Date
Xu Zhao
146721f1df Fix typing errors in the torch.distributions module (#45689)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/42979.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45689

Reviewed By: agolynski

Differential Revision: D24229870

Pulled By: xuzhao9

fbshipit-source-id: 5fc87cc428170139962ab65b71cacba494d46130
2020-10-12 10:29:45 -07:00
Kurt Mohler
a0a8bc8870 Fix mistakes and increase clarity of norm documentation (#42696)
Summary:
* Removes incorrect statement that "the vector norm will be applied to the last dimension".
* More clearly describe each different combination of `p`, `ord`, and input size.
* Moves norm tests from `test/test_torch.py` to `test/test_linalg.py`
* Adds test ensuring that `p='fro'` and `p=2` give same results for mutually valid inputs

Fixes https://github.com/pytorch/pytorch/issues/41388

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42696

Reviewed By: bwasti

Differential Revision: D23876862

Pulled By: mruberry

fbshipit-source-id: 36f33ccb6706d5fe13f6acf3de8ae14d7fbdff85
2020-10-10 14:12:43 -07:00
Meghan Lele
78f055272c [docs] Add 3D reduction example to tensordot docs (#45697)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45697

**Summary**
This commit adds an example of a reduction over three dimensions with
`torch.tensordot`. It is unclear from existing docs whether `dims`
should be a list of pairs or a pair of lists.

**Test Plan**
Built the docs locally.

*Before*
<img width="864" alt="Captura de Pantalla 2020-10-01 a la(s) 1 35 46 p  m" src="https://user-images.githubusercontent.com/4392003/94866838-f0b17f80-03f4-11eb-8692-8f50fe3b9863.png">

*After*
<img width="831" alt="Captura de Pantalla 2020-10-05 a la(s) 12 06 28 p  m" src="https://user-images.githubusercontent.com/4392003/95121092-670af600-0703-11eb-959f-73c7797a76ee.png">

**Fixes**
This commit closes #22748.

Test Plan: Imported from OSS

Reviewed By: ansley

Differential Revision: D24118186

Pulled By: SplitInfinity

fbshipit-source-id: c19b0b7e001f8cd099dc4c2e0e8ec39310510b46
2020-10-05 15:36:59 -07:00
Mike Ruberry
bb19a55429 Improves fft doc consistency and makes deprecation warnings more prominent (#45409)
Summary:
This PR makes the deprecation warnings for existing fft functions more prominent and makes the torch.stft deprecation warning consistent with our current deprecation planning.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45409

Reviewed By: ngimel

Differential Revision: D23974975

Pulled By: mruberry

fbshipit-source-id: b90d8276095122ac3542ab625cb49b991379c1f8
2020-09-29 09:07:49 -07:00
Mike Ruberry
6417a70465 Updates linalg warning + docs (#45415)
Summary:
Changes the deprecation of norm to a docs deprecation, since PyTorch components still rely on norm and some behavior, like automatically flattening tensors, may need to be ported to torch.linalg.norm. The documentation is also updated to clarify that torch.norm and torch.linalg.norm are distinct.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45415

Reviewed By: ngimel

Differential Revision: D23958252

Pulled By: mruberry

fbshipit-source-id: fd54e807c59a2655453a6bcd9f4073cb2c12e8ac
2020-09-28 05:28:42 -07:00
Peter Bell
caea1adc35 Complex support for stft and istft (#43886)
Summary:
Ref https://github.com/pytorch/pytorch/issues/42175, fixes https://github.com/pytorch/pytorch/issues/34797

This adds complex support to `torch.stft` and `torch.istft`. Note that there are really two issues with complex here: complex signals, and returning complex tensors.

## Complex signals and windows
`stft` currently assumes all signals are real and uses `rfft` with `onesided=True` by default. Similarly, `istft` always takes a complex fourier series and uses `irfft` to return real signals.

For `stft`, I now allow complex inputs and windows by calling the full `fft` if either are complex. If the user gives `onesided=True` and the signal is complex, then this doesn't work and raises an error instead. For `istft`, there's no way to automatically know what to do when `onesided=False` because that could either be a redundant representation of a real signal or a complex signal. So there, the user needs to pass the argument `return_complex=True` in order to use `ifft` and get a complex result back.

## stft returning complex tensors
The other issue is that `stft` returns a complex result, represented as a `(... X 2)` real tensor. I think ideally we want this to return proper complex tensors but to preserver BC I've had to add a `return_complex` argument to manage this transition. `return_complex` defaults to false for real inputs to preserve BC but defaults to True for complex inputs where there is no BC to consider.

In order to `return_complex` by default everywhere without a sudden BC-breaking change, a simple transition plan could be:
1. introduce `return_complex`, defaulted to false when BC is an issue but giving a warning. (this PR)
2. raise an error in cases where `return_complex` defaults to false, making it a required argument.
3. change `return_complex` default to true in all cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43886

Reviewed By: glaringlee

Differential Revision: D23760174

Pulled By: mruberry

fbshipit-source-id: 2fec4404f5d980ddd6bdd941a63852a555eb9147
2020-09-18 01:39:47 -07:00
Kurt Mohler
28a23fce4c Deprecate torch.norm and torch.functional.norm (#44321)
Summary:
Part of https://github.com/pytorch/pytorch/issues/24802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44321

Reviewed By: mrshenli

Differential Revision: D23617273

Pulled By: mruberry

fbshipit-source-id: 6f88b5cb097fd0acb9cf0e415172c5a86f94e9f2
2020-09-10 01:16:41 -07:00
Nikita Shulga
0c01f136f3 [BE] Use f-string in various Python functions (#44161)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44161

Reviewed By: seemethere

Differential Revision: D23515874

Pulled By: malfet

fbshipit-source-id: 868cf65aedd58fce943c08f8e079e84e0a36df1f
2020-09-04 07:38:25 -07:00
Ralf Gommers
573940f8d7 Fix type annotation errors in torch.functional (#43446)
Summary:
Closes gh-42968

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43446

Reviewed By: albanD

Differential Revision: D23280962

Pulled By: malfet

fbshipit-source-id: de5386a95a20ecc814c39cbec3e4252112340b3a
2020-08-26 08:27:59 -07:00
Ralf Gommers
b430347a60 Address JIT/Mypy issue with torch._VF (#43454)
Summary:
- `torch._VF` is a hack to work around the lack of support for `torch.functional` in the JIT
- that hack hides `torch._VF` functions from Mypy
- could be worked around by re-introducing a stub file for `torch.functional`, but that's undesirable
- so instead try to make both happy at the same time: the type ignore comments are needed for Mypy, and don't seem to affect the JIT after excluding them from the `get_type_line()` logic

Encountered this issue while trying to make `mypy` run on `torch/functional.py` in gh-43446.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43454

Reviewed By: glaringlee

Differential Revision: D23305579

Pulled By: malfet

fbshipit-source-id: 50e490693c1e53054927b57fd9acc7dca57e88ca
2020-08-25 09:23:54 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Kurt Mohler
206db5c127 Improve torch.norm functionality, errors, and tests (#41956)
Summary:
**BC-Breaking Note:**
BC breaking changes in the case where keepdim=True. Before this change, when calling `torch.norm` with keepdim=True and p='fro' or p=number, leaving all other optional arguments as their default values, the keepdim argument would be ignored. Also, any time `torch.norm` was called with p='nuc', the result would have one fewer dimension than the input, and the dimensions could be out of order depending on which dimensions were being reduced. After the change, for each of these cases, the result has the same number and order of dimensions as the input.

**PR Summary:**

* Fix keepdim behavior
* Throw descriptive errors for unsupported sparse norm args
* Increase unit test coverage for these cases and for complex inputs

These changes were taken from part of PR https://github.com/pytorch/pytorch/issues/40924. That PR is not going to be merged because it overrides `torch.norm`'s interface, which we want to avoid. But these improvements are still useful.

Issue https://github.com/pytorch/pytorch/issues/24802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41956

Reviewed By: albanD

Differential Revision: D22837455

Pulled By: mruberry

fbshipit-source-id: 509ecabfa63b93737996f48a58c7188b005b7217
2020-08-01 01:55:12 -07:00
mattip
8c653e05ff DOC: fail to build if there are warnings (#41335)
Summary:
Merge after gh-41334 and gh-41321 (EDIT: both are merged).
Closes gh-38011

This is the last in a series of PRs to build documentation without warnings. It adds `-WT --keepgoing` to the shpinx build which will [fail the build if there are warnings](https://www.sphinx-doc.org/en/master/man/sphinx-build.html#cmdoption-sphinx-build-W), print a [trackeback on error](https://www.sphinx-doc.org/en/master/man/sphinx-build.html#cmdoption-sphinx-build-T) and [finish the build](https://www.sphinx-doc.org/en/master/man/sphinx-build.html#cmdoption-sphinx-build-keep-going) even when there are warnings.

It should fail now, but pass once the PRs mentioned at the top are merged.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41335

Reviewed By: pbelevich

Differential Revision: D22794425

Pulled By: mruberry

fbshipit-source-id: eb2903e50759d1d4f66346ee2ceebeecfac7b094
2020-07-28 22:33:44 -07:00
kshitij12345
71fdf748e5 Add torch.atleast_{1d/2d/3d} (#41317)
Summary:
https://github.com/pytorch/pytorch/issues/38349

TODO:
 * [x] Docs
 * [x] Tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41317

Reviewed By: ngimel

Differential Revision: D22575456

Pulled By: mruberry

fbshipit-source-id: cc79f4cd2ca4164108ed731c33cf140a4d1c9dd8
2020-07-17 10:10:41 -07:00
KushajveerSingh
88fe05e106 [Docs] Update torch.(squeeze, split, set_printoptions, save) docs. (#39303)
Summary:
I added the following to the docs:
1. `torch.save`.
    1. Added doc for `_use_new_zipfile_serialization` argument.
    2. Added a note telling that extension does not matter while saving.
    3. Added an example showing the use of above argument along with `pickle_protocol=5`.

2. `torch.split`
    1. Added an example showing the use of the function.

3. `torch.squeeze`
   1. Added a warning for batch_size=1 case.

4. `torch.set_printoptions`
    1. Changed the docs of `sci_mode` argument from
        ```
        sci_mode: Enable (True) or disable (False) scientific notation. If
                 None (default) is specified, the value is defined by `_Formatter`
        ```
        to
        ```
        sci_mode: Enable (True) or disable (False) scientific notation. If
                 None (default=False) is specified, the value is defined by
                `torch._tensor_str._Formatter`.
        ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39303

Differential Revision: D21904504

Pulled By: zou3519

fbshipit-source-id: 92a324257d09d6bcfa0b410d4578859782b94488
2020-06-05 12:57:53 -07:00
Xiang Gao
ebd4125e7e [JIT] Make torch.unique_consecutive compatible (#39339)
Summary:
A `unique_consecutive` version of https://github.com/pytorch/pytorch/pull/38156
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39339

Differential Revision: D21823997

Pulled By: eellison

fbshipit-source-id: d14596a36ba36497e296da5a344e0376cef56f1b
2020-06-02 14:54:29 -07:00
Ralf Gommers
d363cf4639 Fix incorrect __torch_function__ handling in einsum (#38741)
Summary:
Closes gh-38479
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38741

Differential Revision: D21662512

Pulled By: ezyang

fbshipit-source-id: 247e3b50b8f2dd842c03be8d6ebe71910b619bc6
2020-05-21 06:59:25 -07:00
Elias Ellison
eb3e9872c9 [JIT] make torch.unique compilable (#38156)
Summary:
Fix for https://github.com/pytorch/pytorch/issues/37986

Follows the stack in https://github.com/pytorch/pytorch/pull/33783 stack to make functions in `torch/functional.py` resolve to their python implementations. Because the return type of `torch.unique` depends on `return_inverse` and `return_counts` I had to refactor the implementation to use our boolean_dispatch mechanism.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38156

Differential Revision: D21504449

Pulled By: eellison

fbshipit-source-id: 7efb1dff3b5c00655da10168403ac4817286ff59
2020-05-12 18:37:53 -07:00
moto
5a27ec09b8 Add Inverse Short Time Fourier Transform in ATen native (#35569)
Summary:
Ported `torchaudio`'s implementation (test, and documentation as well) to ATen.

Note
 - Batch packing/unpacking is performed in Python. ATen implementation expects 4D input tensor.
 - The way `hop_length` is initialized in the same way as `stft` implementation. [The Torchaudio's version tried to mimic the same behavior but slightly different](7da61a4bee/torchaudio/functional.py (L152-L157)).

Closes https://github.com/pytorch/pytorch/issues/34827
Relates https://github.com/pytorch/pytorch/issues/3775
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35569

Differential Revision: D21178090

Pulled By: mthrok

fbshipit-source-id: 2701a8b241a36a6fb1b740c2fb2b07cb938185d4
2020-04-24 12:14:55 -07:00
Alban Desmaison
3799d1d74a Fix many doc issues (#37099)
Summary:
Fix https://github.com/pytorch/pytorch/issues/35643 https://github.com/pytorch/pytorch/issues/37063 https://github.com/pytorch/pytorch/issues/36307 https://github.com/pytorch/pytorch/issues/35861 https://github.com/pytorch/pytorch/issues/35299 https://github.com/pytorch/pytorch/issues/23108 https://github.com/pytorch/pytorch/issues/4661

Just a bunch of small updates on the doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37099

Differential Revision: D21185713

Pulled By: albanD

fbshipit-source-id: 4ac06d6709dc0da6109a6ad3daae75667ee5863e
2020-04-23 10:01:03 -07:00
Ralf Gommers
78d5707041 Fix type annotations and make MyPy run on torch/ (#36584)
Summary:
This PR fixes a couple of syntax errors in `torch/` that prevent MyPy from running, fixes simple type annotation errors (e.g. missing `from typing import List, Tuple, Optional`), and adds granular ignores for errors in particular modules as well as for missing typing in third party packages.

As a result, running `mypy` in the root dir of the repo now runs on:
- `torch/`
- `aten/src/ATen/function_wrapper.py` (the only file already covered in CI)

In CI this runs on GitHub Actions, job Lint, sub-job "quick-checks", task "MyPy typecheck". It should give (right now): `Success: no issues found in 329 source files`.

Here are the details of the original 855 errors when running `mypy torch` on current master (after fixing the couple of syntax errors that prevent `mypy` from running through):

<details>

```
torch/utils/tensorboard/_proto_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_proto_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_proto_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/backcompat/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/for_onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch.for_onnx.onnx'
torch/cuda/nvtx.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/utils/show_pickle.py:59: error: Name 'pickle._Unpickler' is not defined
torch/utils/show_pickle.py:113: error: "Type[PrettyPrinter]" has no attribute "_dispatch"
torch/utils/tensorboard/_onnx_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.graph_pb2'
torch/utils/tensorboard/_onnx_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_onnx_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.versions_pb2'
torch/utils/tensorboard/_onnx_graph.py:4: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_onnx_graph.py:5: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/tensorboard/_onnx_graph.py:9: error: Cannot find implementation or library stub for module named 'onnx'
torch/contrib/_tensorboard_vis.py:10: error: Cannot find implementation or library stub for module named 'tensorflow.core.util'
torch/contrib/_tensorboard_vis.py:11: error: Cannot find implementation or library stub for module named 'tensorflow.core.framework'
torch/contrib/_tensorboard_vis.py:12: error: Cannot find implementation or library stub for module named 'tensorflow.python.summary.writer.writer'
torch/utils/hipify/hipify_python.py:43: error: Need type annotation for 'CAFFE2_TEMPLATE_MAP' (hint: "CAFFE2_TEMPLATE_MAP: Dict[<type>, <type>] = ...")
torch/utils/hipify/hipify_python.py:636: error: "object" has no attribute "items"
torch/nn/_reduction.py:27: error: Name 'Optional' is not defined
torch/nn/_reduction.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/_reduction.py:47: error: Name 'Optional' is not defined
torch/nn/_reduction.py:47: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib.pyplot': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends.backend_agg': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends': found module but no type hints or library stubs
torch/nn/modules/utils.py:27: error: Name 'List' is not defined
torch/nn/modules/utils.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
caffe2/proto/caffe2_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/caffe2_pb2.py:25: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:31: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:35: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:39: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:47: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:51: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:55: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:59: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:63: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:67: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:71: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:75: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:108: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:112: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:124: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:134: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:138: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:142: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:146: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:150: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:154: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:158: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:162: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:166: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:170: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:174: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:194: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:200: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:204: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:208: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:212: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:224: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:230: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:238: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:242: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:246: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:250: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:267: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:288: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:295: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:302: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:327: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:334: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:341: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:364: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:371: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:378: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:385: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:392: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:399: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:406: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:413: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:420: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:448: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:455: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:462: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:488: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:495: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:502: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:509: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:516: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:523: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:530: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:537: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:544: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:551: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:558: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:565: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:572: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:596: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:603: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:627: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:634: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:641: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:648: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:655: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:662: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:686: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:693: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:717: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:724: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:731: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:738: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:763: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:770: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:777: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:784: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:808: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:815: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:822: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:829: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:836: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:843: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:850: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:857: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:864: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:871: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:878: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:885: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:892: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:916: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:923: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:930: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:937: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:944: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:951: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:958: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:982: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:989: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:996: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1003: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1010: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1017: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1024: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1031: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1038: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1045: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1052: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1059: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1066: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1090: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1097: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1104: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1128: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1135: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1142: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1166: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1173: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1180: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1187: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1194: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1218: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1225: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1232: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1239: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1246: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1253: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1260: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1267: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1305: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1312: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1319: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1326: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1333: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1340: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1347: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1354: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1361: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1368: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1375: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1382: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1389: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1396: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1420: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1465: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1472: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1479: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1486: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1493: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1500: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1507: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1514: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1538: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1545: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1552: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1559: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1566: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1667: error: "GeneratedProtocolMessageType" has no attribute "Segment"
torch/multiprocessing/queue.py:4: error: No library stub file for standard library module 'multiprocessing.reduction'
caffe2/proto/torch_pb2.py:18: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/torch_pb2.py:27: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/torch_pb2.py:33: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/torch_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:81: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:109: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:116: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:123: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:137: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:144: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:151: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:175: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:189: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:196: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:220: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:227: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:241: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:265: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:272: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:279: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:286: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:293: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:300: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:307: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:314: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:321: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:328: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:335: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:342: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:366: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:373: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:397: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:404: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:411: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:418: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:425: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:432: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/metanet_pb2.py:29: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:36: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:64: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:126: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:133: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:140: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:164: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:171: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:202: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:209: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:216: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:240: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:247: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:261: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:268: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:275: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:282: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:289: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:296: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/__init__.py:13: error: Skipping analyzing 'caffe2.caffe2.fb.session.proto': found module but no type hints or library stubs
torch/multiprocessing/pool.py:3: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/pool.py:3: note: (Stub files are from https://github.com/python/typeshed)
caffe2/python/scope.py:10: error: Skipping analyzing 'past.builtins': found module but no type hints or library stubs
caffe2/python/__init__.py:7: error: Module has no attribute "CPU"
caffe2/python/__init__.py:8: error: Module has no attribute "CUDA"
caffe2/python/__init__.py:9: error: Module has no attribute "MKLDNN"
caffe2/python/__init__.py:10: error: Module has no attribute "OPENGL"
caffe2/python/__init__.py:11: error: Module has no attribute "OPENCL"
caffe2/python/__init__.py:12: error: Module has no attribute "IDEEP"
caffe2/python/__init__.py:13: error: Module has no attribute "HIP"
caffe2/python/__init__.py:14: error: Module has no attribute "COMPILE_TIME_MAX_DEVICE_TYPES"; maybe "PROTO_COMPILE_TIME_MAX_DEVICE_TYPES"?
caffe2/python/__init__.py:15: error: Module has no attribute "ONLY_FOR_TEST"; maybe "PROTO_ONLY_FOR_TEST"?
caffe2/python/__init__.py:34: error: Item "_Loader" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:34: error: Item "None" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:35: error: Module has no attribute "cuda"
caffe2/python/__init__.py:37: error: Module has no attribute "cuda"
caffe2/python/__init__.py:49: error: Module has no attribute "add_dll_directory"
torch/random.py:4: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_classes.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/hub.py:21: error: Skipping analyzing 'tqdm.auto': found module but no type hints or library stubs
torch/hub.py:24: error: Skipping analyzing 'tqdm': found module but no type hints or library stubs
torch/hub.py:27: error: Name 'tqdm' already defined (possibly by an import)
torch/_tensor_str.py:164: error: Not all arguments converted during string formatting
torch/_ops.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_linalg_utils.py:26: error: Name 'Optional' is not defined
torch/_linalg_utils.py:26: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:26: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Optional' is not defined
torch/_linalg_utils.py:63: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Optional' is not defined
torch/_linalg_utils.py:70: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Optional' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:88: error: Name 'Tuple' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_jit_internal.py:17: error: Need type annotation for 'boolean_dispatched'
torch/_jit_internal.py:474: error: Need type annotation for '_overloaded_fns' (hint: "_overloaded_fns: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:512: error: Need type annotation for '_overloaded_methods' (hint: "_overloaded_methods: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:648: error: Incompatible types in assignment (expression has type "FinalCls", variable has type "_SpecialForm")
torch/sparse/__init__.py:11: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Optional' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/sparse/__init__.py:71: error: Name 'Tuple' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/nn/init.py:109: error: Name 'Tensor' is not defined
torch/nn/init.py:126: error: Name 'Tensor' is not defined
torch/nn/init.py:142: error: Name 'Tensor' is not defined
torch/nn/init.py:165: error: Name 'Tensor' is not defined
torch/nn/init.py:180: error: Name 'Tensor' is not defined
torch/nn/init.py:194: error: Name 'Tensor' is not defined
torch/nn/init.py:287: error: Name 'Tensor' is not defined
torch/nn/init.py:315: error: Name 'Tensor' is not defined
torch/multiprocessing/reductions.py:8: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/reductions.py:9: error: No library stub file for standard library module 'multiprocessing.reduction'
torch/multiprocessing/reductions.py:17: error: No library stub file for standard library module 'multiprocessing.resource_sharer'
torch/jit/_builtins.py:72: error: Module has no attribute "_no_grad_embedding_renorm_"
torch/jit/_builtins.py:80: error: Module has no attribute "stft"
torch/jit/_builtins.py:81: error: Module has no attribute "cdist"
torch/jit/_builtins.py:82: error: Module has no attribute "norm"
torch/jit/_builtins.py:83: error: Module has no attribute "nuclear_norm"
torch/jit/_builtins.py:84: error: Module has no attribute "frobenius_norm"
torch/backends/cudnn/__init__.py:8: error: Cannot find implementation or library stub for module named 'torch._C'
torch/backends/cudnn/__init__.py:86: error: Need type annotation for '_handles' (hint: "_handles: Dict[<type>, <type>] = ...")
torch/autograd/profiler.py:13: error: Name 'ContextDecorator' already defined (possibly by an import)
torch/autograd/function.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/autograd/function.py:2: note: See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing-imports
torch/autograd/function.py:109: error: Unsupported dynamic base class "with_metaclass"
torch/serialization.py:609: error: "Callable[[Any], Any]" has no attribute "cache"
torch/_lowrank.py:11: error: Name 'Tensor' is not defined
torch/_lowrank.py:13: error: Name 'Optional' is not defined
torch/_lowrank.py:13: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Optional' is not defined
torch/_lowrank.py:14: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Optional' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:82: error: Name 'Tuple' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:130: error: Name 'Tensor' is not defined
torch/_lowrank.py:130: error: Name 'Optional' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:130: error: Name 'Tuple' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:167: error: Name 'Tensor' is not defined
torch/_lowrank.py:167: error: Name 'Optional' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:167: error: Name 'Tuple' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:45: error: Variable "torch.quantization.observer.ABC" is not valid as a type
torch/quantization/observer.py:45: note: See https://mypy.readthedocs.io/en/latest/common_issues.html#variables-vs-type-aliases
torch/quantization/observer.py:45: error: Invalid base class "ABC"
torch/quantization/observer.py:127: error: Name 'Tensor' is not defined
torch/quantization/observer.py:127: error: Name 'Tuple' is not defined
torch/quantization/observer.py:127: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:172: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:172: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:192: error: Name 'Tensor' is not defined
torch/quantization/observer.py:192: error: Name 'Tuple' is not defined
torch/quantization/observer.py:192: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:233: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:233: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:534: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tuple' is not defined
torch/quantization/observer.py:885: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:894: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:894: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:899: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:902: error: Name 'Tensor' is not defined
torch/quantization/observer.py:925: error: Name 'Tensor' is not defined
torch/quantization/observer.py:928: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:929: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:946: error: Argument "min" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:946: error: Argument "max" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:1056: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:1058: error: Module has no attribute "per_channel_symmetric"
torch/nn/quantized/functional.py:76: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:76: error: Name 'BroadcastingList2' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:259: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:289: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:290: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:308: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:326: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:356: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:371: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:400: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:430: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:448: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/linear.py:26: error: Module has no attribute "ops"
torch/nn/quantized/modules/linear.py:28: error: Module has no attribute "ops"
torch/nn/quantized/modules/functional_modules.py:40: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:47: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:54: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:61: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:68: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:75: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:140: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:146: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:151: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:157: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:162: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:168: error: Name 'Tensor' is not defined
torch/multiprocessing/spawn.py:9: error: Module 'torch.multiprocessing' has no attribute '_prctl_pr_set_pdeathsig'
torch/multiprocessing/__init__.py:28: error: Module has no attribute "__all__"
torch/jit/frontend.py:9: error: Cannot find implementation or library stub for module named 'torch._C._jit_tree_views'
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList2'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList3'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:9: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributions/distribution.py:16: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/distribution.py:74: error: Name 'arg_constraints' already defined on line 16
torch/distributions/distribution.py:84: error: Name 'support' already defined on line 15
torch/functional.py:114: error: Name 'Tuple' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:114: error: Name 'Optional' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:189: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:200: error: Argument 1 to "_indices_product" has incompatible type "Tuple[int, ...]"; expected "List[int]"
torch/functional.py:204: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:204: note: Possible overload variants:
torch/functional.py:204: note:     def __setitem__(self, int, int) -> None
torch/functional.py:204: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:204: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:204: note:     def __getitem__(self, int) -> int
torch/functional.py:204: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:207: error: "Tensor" has no attribute "copy_"
torch/functional.py:212: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:212: note: Possible overload variants:
torch/functional.py:212: note:     def __setitem__(self, int, int) -> None
torch/functional.py:212: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:212: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:212: note:     def __getitem__(self, int) -> int
torch/functional.py:212: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:215: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:334: error: Name 'Optional' is not defined
torch/functional.py:334: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:429: error: Argument 2 to "pad" has incompatible type "Tuple[int, int]"; expected "List[int]"
torch/functional.py:431: error: Module has no attribute "stft"
torch/functional.py:766: error: Module has no attribute "cdist"
torch/functional.py:768: error: Module has no attribute "cdist"
torch/functional.py:770: error: Module has no attribute "cdist"
torch/functional.py:775: error: Name 'Optional' is not defined
torch/functional.py:775: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'Optional' is not defined
torch/functional.py:780: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'number' is not defined
torch/functional.py:780: error: Name 'norm' already defined on line 775
torch/functional.py:785: error: Name 'Optional' is not defined
torch/functional.py:785: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:785: error: Name 'number' is not defined
torch/functional.py:785: error: Name 'norm' already defined on line 775
torch/functional.py:790: error: Name 'Optional' is not defined
torch/functional.py:790: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:790: error: Name 'norm' already defined on line 775
torch/functional.py:795: error: Name 'norm' already defined on line 775
torch/functional.py:960: error: Name 'Any' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Any")
torch/functional.py:960: error: Name 'Tuple' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1036: error: Argument 1 to "len" has incompatible type "int"; expected "Sized"
torch/functional.py:1041: error: Name 'Optional' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1041: error: Name 'Tuple' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1056: error: Name 'Optional' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1056: error: Name 'Tuple' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/distributions/von_mises.py:87: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/negative_binomial.py:25: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/multivariate_normal.py:116: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/laplace.py:23: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/independent.py:34: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/cauchy.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/poisson.py:28: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/one_hot_categorical.py:32: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/normal.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/lowrank_multivariate_normal.py:79: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/gamma.py:30: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/exponential.py:23: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/fishersnedecor.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/dirichlet.py:44: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/nn/quantized/dynamic/modules/rnn.py:230: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:232: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:236: error: Incompatible return value type (got "Tuple[Any, Tensor, Any]", expected "Tuple[int, int, int]")
torch/nn/quantized/dynamic/modules/rnn.py:351: error: Incompatible types in assignment (expression has type "Type[LSTM]", base class "RNNBase" defined the type as "Type[RNNBase]")
torch/nn/quantized/dynamic/modules/rnn.py:381: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:385: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:414: error: Argument 1 to "forward_impl" of "LSTM" has incompatible type "PackedSequence"; expected "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:416: error: Incompatible types in assignment (expression has type "PackedSequence", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:418: error: Incompatible return value type (got "Tuple[Tensor, Tuple[Tensor, Tensor]]", expected "Tuple[PackedSequence, Tuple[Tensor, Tensor]]")
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Argument 1 of "permute_hidden" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Return type "Tuple[Tensor, Tensor]" of "permute_hidden" incompatible with return type "Tensor" in supertype "RNNBase"
torch/nn/quantized/dynamic/modules/rnn.py:426: error: Argument 2 of "check_forward_args" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/intrinsic/qat/modules/conv_fused.py:232: error: Incompatible types in assignment (expression has type "Type[ConvBnReLU2d]", base class "ConvBn2d" defined the type as "Type[ConvBn2d]")
torch/distributions/beta.py:27: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/geometric.py:31: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/continuous_bernoulli.py:38: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/bernoulli.py:30: error: Incompatible types in assignment (expression has type "_Boolean", base class "Distribution" defined the type as "None")
torch/quantization/fake_quantize.py:126: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/fake_quantize.py:132: error: Module has no attribute "per_channel_symmetric"
torch/distributions/transformed_distribution.py:41: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/jit/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/jit/__init__.py:15: error: Module 'torch.utils' has no attribute 'set_module'
torch/jit/__init__.py:70: error: Name 'Attribute' already defined on line 68
torch/jit/__init__.py:213: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:215: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:1524: error: Unsupported dynamic base class "with_metaclass"
torch/jit/__init__.py:1869: error: Name 'ScriptModule' already defined on line 1524
torch/jit/__init__.py:1998: error: Need type annotation for '_jit_caching_layer'
torch/jit/__init__.py:1999: error: Need type annotation for '_jit_function_overload_caching'
torch/distributions/relaxed_categorical.py:34: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_categorical.py:108: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:31: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:114: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/logistic_normal.py:31: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/log_normal.py:26: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_normal.py:27: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_cauchy.py:28: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/gumbel.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/nn/quantized/modules/conv.py:18: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/quantized/modules/conv.py:209: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:209: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:214: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:321: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:321: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:323: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:447: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:447: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:449: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:513: error: Name 'nn.modules.conv._ConvTransposeNd' is not defined
torch/nn/quantized/modules/conv.py:525: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:525: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/conv.py:527: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:527: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/intrinsic/quantized/modules/conv_relu.py:8: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/intrinsic/quantized/modules/conv_relu.py:21: error: Incompatible types in assignment (expression has type "Type[ConvReLU2d]", base class "Conv2d" defined the type as "Type[Conv2d]")
torch/nn/intrinsic/quantized/modules/conv_relu.py:62: error: Incompatible types in assignment (expression has type "Type[ConvReLU3d]", base class "Conv3d" defined the type as "Type[Conv3d]")
torch/distributions/weibull.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/kl.py:35: error: Need type annotation for '_KL_MEMOIZE' (hint: "_KL_MEMOIZE: Dict[<type>, <type>] = ...")
torch/distributions/studentT.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/mixture_same_family.py:48: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/__init__.py:158: error: Name 'transforms' is not defined
torch/onnx/utils.py:21: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributed/rendezvous.py:4: error: Cannot find implementation or library stub for module named 'urlparse'
torch/distributed/rendezvous.py:4: error: Name 'urlparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:4: error: Name 'urlunparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'FileStore'
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'TCPStore'
torch/distributed/rendezvous.py:65: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceOptions'; maybe "ReduceOptions" or "AllreduceCoalescedOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceCoalescedOptions'; maybe "AllreduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllToAllOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'BroadcastOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'GatherOptions'; maybe "ScatterOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceOptions'; maybe "AllreduceOptions", "ReduceScatterOptions", or "ReduceOp"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceScatterOptions'; maybe "ScatterOptions" or "ReduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ScatterOptions'; maybe "ReduceScatterOptions" or
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36584

Reviewed By: seemethere, ailzhang

Differential Revision: D21155985

Pulled By: ezyang

fbshipit-source-id: f628d4293992576207167e7c417998fad15898d1
2020-04-22 14:17:08 -07:00
David Reiss
e75fb4356b Remove (most) Python 2 support from Python code (#35615)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35615

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well (though using side-by-side view and ignoring
whitespace change might be helpful).

Test Plan: CI

Differential Revision: D20842886

Pulled By: dreiss

fbshipit-source-id: 8cad4e87c45895e7ce3938a88e61157a79504aed
2020-04-22 09:23:14 -07:00
Torsten Wörtwein
be52b7f0ea Documentation LU Decomposition: deriving L, U, and P (#36907)
Summary:
Add note to LU decomposition to use `lu_unpack` to get `L`, `U`, and `P`.

Fixes https://github.com/pytorch/pytorch/issues/36752.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36907

Differential Revision: D21134545

Pulled By: albanD

fbshipit-source-id: 54d4872bb8c95dfb8048aedace9781f843ab8a30
2020-04-21 07:40:21 -07:00
Kurt Mohler
2bc49a4b85 block_diag dense (#33449)
Summary:
Add block_diag function for dense tensors, based on scipy.linalg.block_diag

Closes https://github.com/pytorch/pytorch/issues/31932
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33449

Differential Revision: D20943099

Pulled By: zou3519

fbshipit-source-id: 8b5c9476fb5af959aafa4169612c660396d9b717
2020-04-13 10:04:55 -07:00
Edward Yang
83907ded1d Revert D20895316: [pytorch][PR] [JIT] List reland
Test Plan: revert-hammer

Differential Revision:
D20895316

Original commit changeset: 9a2bc0e6bdcb

fbshipit-source-id: d135f0038cf240a0973ecfcd540121cbd4ecb5a7
2020-04-08 14:40:10 -07:00
Elias Ellison
2afe171538 [JIT] List reland (#36146)
Summary:
Relanding https://github.com/pytorch/pytorch/pull/33783
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36146

Differential Revision: D20895316

Pulled By: eellison

fbshipit-source-id: 9a2bc0e6bdcbd43f9abe51eadaa28f90bccafcc9
2020-04-07 16:18:30 -07:00
Pearu Peterson
8bae1ed144 PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem - copy (#34721)
Summary:
This is a copy of PR https://github.com/pytorch/pytorch/issues/29488 to help the merging process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34721

Differential Revision: D20444270

Pulled By: vincentqb

fbshipit-source-id: 042c56c8c0dae37834f52b4aee2deae7dd6fa659
2020-03-16 14:13:30 -07:00
Edward Yang
4b929e5466 Revert D20193196: [pytorch][PR] PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem
Test Plan: revert-hammer

Differential Revision:
D20193196

Original commit changeset: 78a487991242

fbshipit-source-id: 8da4f8cb17c45af41e8c0ce80bc72581eb10dbb8
2020-03-11 09:24:34 -07:00
Pearu Peterson
2ec779d46c PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem (#29488)
Summary:
This PR implements the following linear algebra algorithms for low-rank matrices:
- [x] Approximate `A` as `Q Q^H A` - using Algorithm 4.4 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
  + exposed as `torch.lowrank.get_approximate_basis(A, q, niter=2, M=None) -> Q`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] SVD - using Algorithm 5.1 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
  + uses `torch.lowrank.get_approximate_basis`
  + exposed as `torch.svd_lowrank(A, q=6, niter=2, M=None) -> (U, S, V)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] PCA - using `torch.svd_lowrank`
  + uses `torch.svd_lowrank`
  + exposed as `torch.pca_lowrank(A, center=True, q=None, niter=2) -> (U, S, V)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices, uses non-centered sparse matrix algorithm
  + [x] documentation
- [x] generalized eigenvalue solver using the original LOBPCG algorithm [Knyazev, 2001](https://epubs.siam.org/doi/abs/10.1137/S1064827500366124)
  + exposed as `torch.lobpcg(A, B=None, k=1, method="basic", ...)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] generalized eigenvalue solver using robust LOBPCG with orthogonal basis selection [Stathopoulos, 2002](https://epubs.siam.org/doi/10.1137/S1064827500370883)
  + exposed as `torch.lobpcg(A, B=None, k=1, method="ortho", ...)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] generalized eigenvalue solver using the robust and efficient LOBPCG Algorithm 8 from [Duersch et al, 2018](https://epubs.siam.org/doi/abs/10.1137/17M1129830) that switches to orthogonal basis selection automatically
  + the "ortho" method improves iterations so rapidly that in the current test cases it does not make sense to use the basic iterations at all. If users will have matrices for which basic iterations could improve convergence then the `tracker` argument allows breaking the iteration process at user choice so that the user can switch to the orthogonal basis selection if needed. In conclusion, there is no need to implement Algorithm 8 at this point.
- [x] benchmarks
  + [x] `torch.svd` vs `torch.svd_lowrank`, see notebook [Low-rank SVD](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/Low-rank%20SVD.ipynb). In conclusion, the low-rank SVD is going to be useful only for large sparse matrices where the full-rank SVD will fail due to memory limitations.
  + [x] `torch.lobpcg` vs `scipy.sparse.linalg.lobpcg`, see notebook [LOBPCG - pytorch vs scipy](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/LOBPCG%20-%20pytorch%20vs%20scipy.ipynb). In conculsion, both implementations give the same results (up to numerical errors from different methods), scipy lobpcg implementation is generally faster.
  + [x] On very small tolerance cases, `torch.lobpcg` is more robust than `scipy.sparse.linalg.lobpcg` (see `test_lobpcg_scipy` results)

Resolves https://github.com/pytorch/pytorch/issues/8049.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29488

Differential Revision: D20193196

Pulled By: vincentqb

fbshipit-source-id: 78a4879912424595e6ea95a95e483a37487a907e
2020-03-11 07:33:49 -07:00
vishwakftw
e025677e3c Remove **kwargs from torch.meshgrid (#34356)
Summary:
Changelog:
- Remove **kwargs from torch.meshgrid as they serve no purpose

Closes https://github.com/pytorch/pytorch/issues/34206
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34356

Differential Revision: D20310971

Pulled By: zou3519

fbshipit-source-id: 97250051504aa3ec1e2a9af9296e7cc71872e5bf
2020-03-09 12:07:43 -07:00
Shen Li
30680196e4 Revert D20121915: [JIT] Add support for list()
Test Plan: revert-hammer

Differential Revision:
D20121915

Original commit changeset: c6c4ef444dbf

fbshipit-source-id: 829adb58780f4d0f41acebb3e7640a9c68bdbc1b
2020-03-06 07:16:40 -08:00
Elias Ellison
f218842f2e [JIT] Add support for list() (#33818)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33818

Test Plan: Imported from OSS

Differential Revision: D20121915

Pulled By: eellison

fbshipit-source-id: c6c4ef444dbf1d4134dccb28c13315e225945b64
2020-03-05 14:48:20 -08:00
Elias Ellison
479c3b0aa5 [JIT] add support for torch.norm (#33783)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33783

Fix for https://github.com/pytorch/pytorch/issues/20113

Test Plan: Imported from OSS

Differential Revision: D20121917

Pulled By: eellison

fbshipit-source-id: ffedcc40678cd80f5529ff9323088eed544e5158
2020-03-05 14:46:24 -08:00
Elias Ellison
857eb4145e [JIT] add support for torch.cdist (#33737)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33737

Test Plan: Imported from OSS

Differential Revision: D20121916

Pulled By: eellison

fbshipit-source-id: b0427bbfd3ade1f3129c4a95a542fbc32c3abd76
2020-02-26 18:37:37 -08:00
Elias Ellison
f31b1d3453 [JIT] add support for lu_unpack (#33736)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33736

Test Plan: Imported from OSS

Differential Revision: D20121914

Pulled By: eellison

fbshipit-source-id: 1136f4d7678a2233129aefe3e30234af385b8353
2020-02-26 18:37:33 -08:00
Elias Ellison
4543cf4eb1 [JIT] add support for torch.lu to torchscript (#33724)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33724

Fix for https://github.com/pytorch/pytorch/issues/33381, partial fix of https://github.com/pytorch/pytorch/issues/30786

Test Plan: Imported from OSS

Differential Revision: D20077321

Pulled By: eellison

fbshipit-source-id: a1e6a0370712b36c9f66979098ac2f9d500ca5f6
2020-02-26 18:37:28 -08:00
Elias Ellison
fddf73250d [JIT] fix resolving of functions in torch/functional. fix compilation of torch.stft (#33504)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33504

Fix resolution fo functions that are bound onto torch in torch/functional.py. This does not fix compilation of all of those functions, those will be done in follow ups. Does torch.stft as a start.

Fixes #21478

Test Plan: Imported from OSS

Differential Revision: D20014591

Pulled By: eellison

fbshipit-source-id: bb362f1b5479adbb890e72a54111ef716679d127
2020-02-26 18:35:43 -08:00
Nathan Goldbaum
fa80299bdf __torch_function__ overrides for torch.functional and torch.nn.functional (#32799)
Summary:
This adds `__torch_function__` support for all functions in `torch.functional` and `torch.nn.functional`.

The changes to C++ code and codegen scripts are to facilitate adding `__torch_function__` support for the native functions in `torch._C._nn`. Note that I moved the `handle_torch_function` C++ function to a header that both `python_torch_functions.cpp` and `python_nn_functions.cpp` include. The changes to `python_nn_functions.cpp` mirror the changes I made to `python_torch_functions.cpp` when `__torch_function__` support was first added in https://github.com/pytorch/pytorch/issues/27064. Due to the somewhat different way the `torch._C` and `torch._C._nn` namespaces are initialized I needed to create a new static reference to the `torch._C._nn` namespace (`THPNNVariableFunctions`). I'm not sure if that is the best way to do this. In principle I could import these namespaces in each kernel and avoid the global variable but that would have a runtime cost.

I added `__torch_function__` support to the Python functions in `torch.nn.functional` following the approach in https://github.com/pytorch/pytorch/issues/32194.

I re-enabled the test that checks if all functions in the `torch` namespace are explicitly tested for `__torch_function__` support. I also generalized the check to work for `torch.functional` and `torch.nn.functional` as well. This test was explicitly disabled in https://github.com/pytorch/pytorch/issues/30730 and I'm happy to disable it again if you think that's appropriate. I figured now was as good a time as any to try to re-enable it.

Finally I adjusted the existing torch API tests to suppress deprecation warnings and add keyword arguments used by some of the code in `torch.nn.functional` that were missed when I originally added the tests in https://github.com/pytorch/pytorch/issues/27064.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32799

Differential Revision: D19956809

Pulled By: ezyang

fbshipit-source-id: 40d34e0109cc4b9f3ef62f409d2d35a1d84e3d22
2020-02-21 08:38:37 -08:00
Mike Ruberry
aa3c871739 Adds TestViewOps, updates documentation (#32512)
Summary:
Understanding which ops return views and which return tensors with new storage is a common user issue, and an issue for developers connecting accelerators to PyTorch, too. This generic test suite verifies that ops which should return views do (and a few ops that shouldn't don't).  The documentation has also been updated for .t(), permute(), unfold(), and select() to clarify they return views.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32512

Differential Revision: D19659454

Pulled By: mruberry

fbshipit-source-id: b4334be9b698253a979e1bb8746fdb3ca24aa4e3
2020-02-04 11:10:34 -08:00
Nathan Goldbaum
bab87e4b60 reimplement __torch_function__ overrides for torch.functional using inline logic (#32194)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/30831.

This improves the performance of operators in the `torch.functional` namespace that are overridable by `__torch_function__` implementations when supplied with `Tensor` operands.

Running the split benchmark in various configurations produces the following timings:

<details>
<summary>Expand for timings on <code>master</code> </summary>

```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cpu
# Input: M: 8, N: 8, parts: 2, device: cpu
Forward Execution Time (us) : 3.340

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cuda
# Input: M: 8, N: 8, parts: 2, device: cuda
Forward Execution Time (us) : 3.333

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cpu
# Input: M: 256, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 3.366

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cuda
# Input: M: 256, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 3.385

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cpu
# Input: M: 512, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 3.468

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cuda
# Input: M: 512, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 3.416
```
</details>

<details>
<summary>Expand for timings with this pull request applied</summary>

```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cpu
# Input: M: 8, N: 8, parts: 2, device: cpu
Forward Execution Time (us) : 2.261

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cuda
# Input: M: 8, N: 8, parts: 2, device: cuda
Forward Execution Time (us) : 2.223

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cpu
# Input: M: 256, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 2.237

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cuda
# Input: M: 256, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 2.218

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cpu
# Input: M: 512, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 2.259

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cuda
# Input: M: 512, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 2.234
```

</details>

<details>
<summary>Expand for timings on <code>master</code> with <code>__torch_function__</code> dispatch disabled </summary>

```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cpu
# Input: M: 8, N: 8, parts: 2, device: cpu
Forward Execution Time (us) : 2.180

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M8_N8_parts2_cuda
# Input: M: 8, N: 8, parts: 2, device: cuda
Forward Execution Time (us) : 2.172

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cpu
# Input: M: 256, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 2.171

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M256_N512_parts2_cuda
# Input: M: 256, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 2.146

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cpu
# Input: M: 512, N: 512, parts: 2, device: cpu
Forward Execution Time (us) : 2.175

# Benchmarking PyTorch: split
# Mode: Eager
# Name: split_M512_N512_parts2_cuda
# Input: M: 512, N: 512, parts: 2, device: cuda
Forward Execution Time (us) : 2.152
```

</details>

So at least on the machine I'm testing on, this brings the overhead down to less than 100 ns. For comparison, the overhead for `__array_function__` in NumPy is about 850 ns on the same machine.

<details>
<summary>Expand for timings for NumPy <code>__array_function__</code> dispatch </summary>

```
In [1]: import numpy as np

In [2]: %timeit np.mean([1])
8.89 µs ± 17.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [3]: %timeit np.mean._implementation([1])
8.04 µs ± 28.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
```

See [the implementation in NumPy](https://github.com/numpy/numpy/blob/master/numpy/core/overrides.py#L195) for why this measures `__array_function__` overhead.

</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32194

Differential Revision: D19410396

Pulled By: ezyang

fbshipit-source-id: ada788a4399c81cd7eb2d548aa04a2459e96634a
2020-01-16 07:10:38 -08:00
Tongzhou Wang
b6f43afaca Fix tensordot allowing negative dims (#31954)
Summary:
fixes https://github.com/pytorch/pytorch/issues/31926
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31954

Differential Revision: D19331847

Pulled By: zou3519

fbshipit-source-id: e30dd9517917c056a52be7d16f23247fe28f4e28
2020-01-10 07:42:04 -08:00
TH3CHARLie
1296e2d55e C++ API parity: isinf (#31099)
Summary:
fixes https://github.com/pytorch/pytorch/issues/31021, port the legacy binding method of `isinf` to C++ therefore support JIT
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31099

Differential Revision: D19314733

Pulled By: yf225

fbshipit-source-id: 5725c51d19c33b4fddd0fc9e7034078580bd534e
2020-01-09 13:16:13 -08:00
Karl Ostmo
227d1a43a4 Revert D18838848: disable __torch_function__ overides for operators in torch.functional
Test Plan: revert-hammer

Differential Revision:
D18838848

Original commit changeset: 22b8015d7b2f

fbshipit-source-id: fdaeffcd112990ed379782cf7216d3f1beeb2cb1
2020-01-07 15:03:15 -08:00
Nathan Goldbaum
ca72df06ae disable __torch_function__ overides for operators in torch.functional (#30839)
Summary:
For now I'm just removing the decorators from all of the currently overridable functions in `torch.functional`. This means they are no longer overridable, however this should fix the benchmark regressions reported in https://github.com/pytorch/pytorch/issues/30831. Moving forward we'll be looking at reducing the overhead of the python-level override mechanism and failing that, re-implementing all of these operators in C++.

cc hl475
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30839

Differential Revision: D18838848

Pulled By: ezyang

fbshipit-source-id: 22b8015d7b2f7a947f1ebc9632c998e081b48ad8
2020-01-07 12:27:28 -08:00
Richard Zou
9047d4df45 Remove all remaining usages of BUILD_NAMEDTENSOR (#31116)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31116

Changelist:
- remove BUILD_NAMEDTENSOR macro
- remove torch._C._BUILD_NAMEDTENSOR
- remove all python behavior that relies on torch._C._BUILD_NAMEDTENSOR

Future:
- In the next diff, I will remove all usages of
ATen/core/EnableNamedTensor.h since that header doesn't do anything
anymore
- After that, we'll be done with the BUILD_NAMEDTENSOR removal.

Test Plan: - run CI

Differential Revision: D18934951

Pulled By: zou3519

fbshipit-source-id: 0a0df0f1f0470d0a01c495579333a2835aac9f5d
2019-12-12 09:53:03 -08:00
Michael Suo
62b10721fb Actually make flake8 do something (#30892)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30892

Fixes all outstanding lints and actually installs a properly configured
flake8

Test Plan: Imported from OSS

Differential Revision: D18862825

Pulled By: suo

fbshipit-source-id: 08e9083338a7309272e17bb803feaa42e348aa85
2019-12-06 17:50:50 -08:00
Nathan Goldbaum
9d3402e4cb Add the __torch_function__ API override mechanism (#30730)
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.

I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730

Differential Revision: D18813270

Pulled By: ezyang

fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
2019-12-04 13:19:07 -08:00
Edward Yang
b8792c0438 Revert D18645954: add __torch_function__ API override mechanism
Test Plan: revert-hammer

Differential Revision:
D18645954

Original commit changeset: 54b5e4344d7a

fbshipit-source-id: 4a7aebb483e6b001130d6f384ccc53c5a808ab13
2019-12-04 07:41:47 -08:00
Prasun Anand
d12786b24f add __torch_function__ API override mechanism (#27064)
Summary:
Closes https://github.com/pytorch/pytorch/issues/24015 (see description of that issue for more details).

For a toy example, see the `DiagonalTensor` and `SubDiagonalTensor` class in test/test_overrides.py.

This PR currently contains:

* tests for `__torch_function__` behavior
* modification to `gen_python_functions` and `parse` function signatures and dispatched to correct overloaded argument.

This feature is inspired by and analogous to NumPy's `__array_function__` protocol ([see NumPy Enhancement Proposal 18](https://numpy.org/neps/nep-0018-array-function-protocol.html#trying-array-function-methods-until-the-right-one-works)).

### Benchmarks:
See Nathan's comment below: https://github.com/pytorch/pytorch/pull/27064#issuecomment-554601189
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27064

Differential Revision: D18645954

Pulled By: ezyang

fbshipit-source-id: 54b5e4344d7afdbcf996bb57191b0bdadc7b1767
2019-12-04 05:56:46 -08:00
Pavel Belevich
cc81769e10 C++ API parity: isfinite
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30083

Test Plan: Imported from OSS

Differential Revision: D18594723

Pulled By: pbelevich

fbshipit-source-id: 5970e0aa6ef8994e9c4a741784fd053383aaceb7
2019-11-19 20:00:05 -08:00
Will Feng
3bd0f476d4 Revert D18233037: C++ API parity: isfinite
Test Plan: revert-hammer

Differential Revision:
D18233037

Original commit changeset: c76b9467bbc1

fbshipit-source-id: 97d2cfa9de767a8c3a0ca919f9d768e959fa484e
2019-11-18 20:26:19 -08:00
Pavel Belevich
8df5e10ee9 C++ API parity: isfinite
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28918

Test Plan: Imported from OSS

Differential Revision: D18233037

Pulled By: pbelevich

fbshipit-source-id: c76b9467bbc1fbb2c9bf49855895c98438b36c12
2019-11-18 19:06:57 -08:00
Vitaly Fedyunin
bf61405ed6 explicitly provide memory format when calling to *_like operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29387

Test Plan: Imported from OSS

Differential Revision: D18429729

Pulled By: VitalyFedyunin

fbshipit-source-id: c71264ed5d64ed7e5d8ea907413b6b8e7b67769a
2019-11-11 17:57:34 -08:00
Xiang Gao
5f03ad9698 Add note to docs of torch.unique (#29165)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/19151
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29165

Differential Revision: D18319890

Pulled By: soumith

fbshipit-source-id: 162afaecd5371446bec2a1769e0a8848ecffb002
2019-11-07 22:03:15 -08:00
Igor Fedan
75309b45f3 explicitly provide memory format when calling to clone() at Indexing.cpp
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28660

Test Plan: Imported from OSS

Differential Revision: D18333346

Pulled By: ifedan

fbshipit-source-id: 06590205d883a5096388a4ae318389244130972d
2019-11-07 05:38:32 -08:00
Pearu Peterson
fd4f22e4ea Generalized LU factorization (#28608)
Summary:
This PR implements support for generalized LU factorization that is required for various algorithms such as PCA (see issue https://github.com/pytorch/pytorch/issues/8049).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28608

Differential Revision: D18326449

Pulled By: ezyang

fbshipit-source-id: d4011d75710e06e87ddbf5ad9afae42ba3330548
2019-11-05 12:27:40 -08:00
Igor Fedan
12dde7f58a cdist performance improvement for euclidean distance (#25799)
Summary:
jacobrgardner https://github.com/pytorch/pytorch/issues/15253#issuecomment-491467128 preposed a way to speedup euclidean distance calculation. This PR is implementation of this solution for normal and batch version.

Also simonepri provided performance metrics https://github.com/pytorch/pytorch/issues/15253#issuecomment-502363581
![image](https://user-images.githubusercontent.com/12058312/64460756-44a24580-d0c9-11e9-9f7f-a5942f4c832d.png)

Current implementation has speedup comparing to jacobrgardner approach
![image](https://user-images.githubusercontent.com/12058312/64461495-5553bb00-d0cb-11e9-87e6-302b8cc7e12b.png)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25799

Differential Revision: D17964982

Pulled By: ifedan

fbshipit-source-id: bf7bd0dbfca51fd39e667da55139347480f30a2f
2019-10-17 14:56:54 -07:00
Dominik1123
5797f5dd27 Update 'einsum' docstring to conform to PEP-484 (#27563)
Summary:
[PEP-484](https://www.python.org/dev/peps/pep-0484/#arbitrary-argument-lists-and-default-argument-values) specifies that arbitrary argument lists, here `*operands`, should be annotated with the type of the single arguments, i.e. not indicating that the whole thing is wrapped into a `list` (which is a Python internal anyway). The previous docstring caused problems with type checkers for IDEs such as PyCharm ([see here](https://youtrack.jetbrains.com/issue/PY-38035)).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27563

Differential Revision: D17904748

Pulled By: soumith

fbshipit-source-id: 0a7fcbbb12e388e6fc40d48bf533652a96024757
2019-10-15 14:35:24 -07:00
Iurii Zdebskyi
293e35a87c Fixed Error message for tensor.align_to (#27221)
Summary:
Fixing this [issue1](https://github.com/pytorch/pytorch/issues/27074) and [issue2](https://github.com/pytorch/pytorch/issues/27073)
Tested via unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27221

Differential Revision: D17716235

Pulled By: izdeby

fbshipit-source-id: c7bafd16b469c91924ebc3dba77ca56424d4c93c
2019-10-02 14:19:40 -07:00
vishwakftw
15b506068b Remove deprecated torch.gels (#26480)
Summary:
Changelog:
- Remove `torch.gels` which was deprecated in v1.2.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26480

Test Plan: - No tests were changed and all callsites for `torch.gels` where modified to `torch.lstsq` when `torch.lstsq` was introduced

Differential Revision: D17527207

Pulled By: zou3519

fbshipit-source-id: 28e2fa3a3bf30eb6b9029bb5aab198c4d570a950
2019-09-23 07:15:39 -07:00
Richard Zou
7030f2c623 Implement tensor.align_to(names), torch.align_tensors(*tensors) (#23804)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23804

`output = tensor.align_to(names)` returns a view of `tensor` such that
`output.names = names`. Dimensions with the same names in `tensor` and
`output` have the same sizes; dimensions with new names have size 1.

The following must be true for this operation to succeed:
1) tensor.names must be a subsequence (not necessarily contiguous) of `names`
2) Aligning tensor.names to names must not change the absolute position from the
   right of any unnamed dimension.

In practice, these constraints mean that aligning cannot transpose
names.

Some examples:
- Tensor[C].align_to(C) -> Tensor[C]
- Tensor[N].align_to([N, C]) -> Tensor[N, C]
- Tensor[H, W].align_to([N, H, W, C]) -> Tensor[N, H, W, C]
- Tensor[None].align_to([N, None]) -> Tensor[N, None]
- Tensor[N].align_to([N, None None]) -> Tensor[N, None, None]

Examples of error cases:
- Tensor[W, H].align_to([N, H, W, C]) -> Error (not a subsequence)
- Tensor[None, H].align_to([None, H, W]) -> Error (would change the
absolute position from the right of a None dimension)

`torch.align_tensors(*tensors)` aligns the named dimensions of each
tensor according to the alignment rules so that they can be used in an
operation. More concretely, it aligns each tensor to the
longest names among the names of the tensors in `tensors`.

This allows users to emulate "broadcasting by names", which is one of
the things named tensors tries to enable. Here is an example:

```
imgs: Tensor[N, C, H, W]
scale: Tensor[N]

// Doesn't work because we do broadcasting by alignment by default
imgs * scale

// Does work
imgs, scale = torch.align_tensors(imgs, scale)
imas * scale
```

Future:
- Consider allowing broadcasting by names by default.

Test Plan:
- The diff looks pretty large but more than half of it is testing.
- new tests [namedtensor ci]

Differential Revision: D16657927

Pulled By: zou3519

fbshipit-source-id: e2f958bf5146c8ee3b694aba57d21b08e928a4e6
2019-08-14 09:40:27 -07:00
Iurii Zdebskyi
865c7eea48 Changed tensor comparison return type from uint8 to bool (#21113)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21113
ghimport-source-id: 9c4ba63457a72bfc41894387e0b01be3fd9a9baf

Test Plan: Imported from OSS

Differential Revision: D15552204

Pulled By: izdeby

fbshipit-source-id: a608213668649d058e22b510d7755cb99e7d0037
2019-08-01 07:54:53 -07:00
vishwakftw
b3a9a7a9b9 Rename gels to lstsq (#23460)
Summary:
Changelog:
- Rename `gels` to `lstsq`
- Fix all callsites
- Rename all tests
- Create a tentative alias for `lstsq` under the name `gels` and add a deprecation warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23460

Test Plan: - All tests should pass to confirm that the patch is correct

Differential Revision: D16547834

Pulled By: colesbury

fbshipit-source-id: b3bdb8f4c5d14c7716c3d9528e40324cc544e496
2019-07-30 09:56:04 -07:00
vishwakftw
6dfecc7e01 Remove deprecated linear algebra functions (and methods) (#22841)
Summary:
Changelog:
- Removed the following linear algebra functions in PyTorch in favor of the renamed operations
  - `btrifact` (use `lu` instead)
  - `btrifact_with_info` (use `lu` with `get_infos=True` instead)
  - `btrisolve` (use `lu_solve` instead)
  - `btriunpack` (use `lu_unpack` instead)
  - `gesv` (use `solve` instead)
  - `pstrf` (use `cholesky` instead)
  - `potrf` (use `cholesky` instead)
  - `potri` (use `cholesky_inverse` instead)
  - `potrs` (use `cholesky_solve` instead)
  - `trtrs` (use `triangular_solve` instead)

- Removed dead code after the removal of `pstrf`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22841

Test Plan:
- All existing tests should pass to verify that the removal is clean

Closes https://github.com/pytorch/pytorch/issues/22832

Differential Revision: D16346184

Pulled By: zou3519

fbshipit-source-id: f748d16ed7609c028de6adcbc28684d5a1af0678
2019-07-19 11:43:06 -07:00
vishwakftw
c9ba3f699d Bag of documentation fixes (#21846)
Summary:
Thanks henon for raising the issues.

Fixes https://github.com/pytorch/pytorch/issues/21830
Fixes https://github.com/pytorch/pytorch/issues/21831
Fixes https://github.com/pytorch/pytorch/issues/21832
Fixes https://github.com/pytorch/pytorch/issues/21827
Fixes https://github.com/pytorch/pytorch/issues/21822
Fixes https://github.com/pytorch/pytorch/issues/21820
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21846

Differential Revision: D15847389

Pulled By: soumith

fbshipit-source-id: 421cc48af646a2618af731697de7d4de83d3eabe
2019-06-16 19:35:27 -07:00
Stefan Krah
8b9b215dc5 Add a 'dim' argument to nuclear norm (#21022)
Summary:
Addresses #18275.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21022

Differential Revision: D15743515

Pulled By: ezyang

fbshipit-source-id: e4aaea0bd7f863a2abad45c4322d6a9fb02a88e3
2019-06-10 15:18:34 -07:00
Charles Lovering
8ae7b1c486 Update functional.py doc (#21510)
Summary:
- Fixes a typo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21510

Differential Revision: D15731277

Pulled By: ezyang

fbshipit-source-id: c3f8e110f5c61e797b857477b495168ea8d63cd5
2019-06-09 15:28:09 -07:00
Jason Lian
6874c4058d Add type annotation to stft (#21302)
Summary:
We want to be able to call stft from a torchscript which requires that stft have a type annotation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21302

Differential Revision: D15607973

Pulled By: cpuhrsch

fbshipit-source-id: c4a5c09cdaafe7e81cf487a3ad216d1b03464a21
2019-06-05 10:06:48 -07:00
Hong Xu
ef1fdc27a3 Raise TypeError when the argument to isinf and isfinite is not a tensor (#20817)
Summary:
Currently when the argument to isinf and isfinite is not tensor, a ValueError is raised. This, however, should be a TypeError, because the error is a type mismatch.

In the error message, "str(tensor)" is replaced by "repr(tensor)" because, when an error occurs, a printable representation of the object is likely more useful than the "informal" string version of the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20817

Differential Revision: D15495624

Pulled By: ezyang

fbshipit-source-id: 514198dcd723a7031818e50a87e187b22d51af73
2019-05-24 09:18:15 -07:00
sebftw
62957ab0a1 Tiny spelling mistake fix. (#20425)
Summary:
"then the output would also has k tensors" -> "then the output would also have k tensors"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20425

Differential Revision: D15320152

Pulled By: zou3519

fbshipit-source-id: b04e2ccd29c6a3e33ad1040d0ea975a01a7bd9b5
2019-05-13 11:18:53 -07:00
vishwakftw
c30224ad21 Rename potri to cholesky_inverse (#19498)
Summary:
Changelog:
- Rename `potri` to `cholesky_inverse` to remain consistent with names of `cholesky` methods (`cholesky`, `cholesky_solve`)
- Fix all callsites
- Rename all tests
- Create a tentative alias for `cholesky_inverse` under the name `potri` and add a deprecation warning to not promote usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19498

Differential Revision: D15029901

Pulled By: ezyang

fbshipit-source-id: 2074286dc93d8744cdc9a45d54644fe57df3a57a
2019-04-22 08:18:39 -07:00
Xiang Gao
e1750754c8 Step 4: add support for unique with dim=None (#18651)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18651
ghimport-source-id: e11988130a3f9a73529de0b0d08b4ec25fbc639c

Differential Revision: D15000463

Pulled By: VitalyFedyunin

fbshipit-source-id: 9e258e473dea6a3fc2307da2119b887ba3f7934a
2019-04-18 18:28:07 -07:00
Xiang Gao
df67969e6b Step 3: Add support for return_counts to torch.unique for dim not None (#18650)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18650
ghimport-source-id: 75759c95e6c48e27c172b919097dbc40c6bfb5e6

Differential Revision: D14892319

Pulled By: VitalyFedyunin

fbshipit-source-id: ec5d1b80fc879d273ac5a534434fd648468dda1e
2019-04-16 14:06:45 -07:00
Xiang Gao
3f7ddd269c Step 2: Rename _unique_dim2_temporary_will_remove_soon to unique_dim (#18649)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18649
ghimport-source-id: 3411d240a6af5fe299a889667964730184e30645

Differential Revision: D14888292

Pulled By: VitalyFedyunin

fbshipit-source-id: 80da83c264598f74ab8decb165da4a1ce2b352bb
2019-04-12 12:41:20 -07:00
Xiang Gao
ea2405c7dc Add torch.unique_consecutive (#19060)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/19045

Please review: VitalyFedyunin ngimel

This is independent on the #18649 series. This will cause merge conflicts in #18649 series, but please merge this first, and I will resolve the merge conflicts there.

The new feature is exposed in `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon`. But not at `torch.unique` yet. I will take care of the API after #18649 series get merged completely.

Benchmark on a tensor of shape `torch.Size([15320, 2])`:

```python
print(torch.__version__)
print()
a = tensor.sort().values.to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+2addccc

cpu, sorted_input=False:
340 µs ± 5.88 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
717 µs ± 14.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
52.3 ms ± 2.75 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
52.3 ms ± 1.79 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
32.8 µs ± 285 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
49.9 µs ± 557 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
51.6 µs ± 1.08 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
78 µs ± 782 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

cuda, sorted_input=False:
213 µs ± 1.52 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
291 µs ± 3.81 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
250 µs ± 1.05 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
321 µs ± 1.59 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
45.6 µs ± 2.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
110 µs ± 2.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
82 µs ± 857 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
143 µs ± 409 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

```python
print(torch.__version__)
print()
a1, a2 = tensor.unbind(1)
indices = (a1 * tensor.max() + a2).sort().indices
a = tensor.index_select(0, indices).to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
cpu, sorted_input=False:
55.4 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.8 ms ± 616 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.2 ms ± 402 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.1 ms ± 725 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
54.7 ms ± 585 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.2 ms ± 1.23 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.5 ms ± 865 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.9 ms ± 577 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

cuda, sorted_input=False:
171 µs ± 783 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
220 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
203 µs ± 2.95 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
251 µs ± 2.83 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
59.6 µs ± 757 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
113 µs ± 431 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
93.2 µs ± 2.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
147 µs ± 2.81 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```
The CPU implementation of `unique_dim` is super slow, see https://github.com/pytorch/pytorch/issues/18987, but this PR will not worry about this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19060

Differential Revision: D14866909

Pulled By: ezyang

fbshipit-source-id: d20012cec68c37b05cf770a6f4d6524f910b950f
2019-04-10 07:36:08 -07:00
Vishwak Srinivasan
487388d8ad Rename btrisolve to lu_solve (#18726)
Summary:
Changelog:
- Rename `btrisolve` to `lu_solve` to remain consistent with names of solve methods (`cholesky_solve`, `triangular_solve`, `solve`)
- Fix all callsites
- Rename all tests
- Create a tentative alias for `lu_solve` under the name `btrisolve` and add a deprecation warning to not promote usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18726

Differential Revision: D14726237

Pulled By: zou3519

fbshipit-source-id: bf25f6c79062183a4153015e0ec7ebab2c8b986b
2019-04-09 15:21:24 -07:00
Vishwak Srinivasan
e73be58ff7 Rename btriunpack to lu_unpack (#18529)
Summary:
Changelog:
- Renames `btriunpack` to `lu_unpack` to remain consistent with the `lu` function interface.
- Rename all relevant tests, fix callsites
- Create a tentative alias for `lu_unpack` under the name `btriunpack` and add a deprecation warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18529

Differential Revision: D14683161

Pulled By: soumith

fbshipit-source-id: 994287eaa15c50fd74c2f1c7646edfc61e8099b1
2019-03-29 13:01:30 -07:00
Vishwak Srinivasan
d859031ebf Rename btrifact* to lu (#18435)
Summary:
Changelog:

- Renames `btrifact` and `btrifact_with_info` to `lu`to remain consistent with other factorization methods (`qr` and `svd`).
- Now, we will only have one function and methods named `lu`, which performs `lu` decomposition. This function takes a get_infos kwarg, which when set to True includes a infos tensor in the tuple.
- Rename all tests, fix callsites
- Create a tentative alias for `lu` under the name `btrifact` and `btrifact_with_info`, and add a deprecation warning to not promote usage.
- Add the single batch version for `lu` so that users don't have to unsqueeze and squeeze for a single square matrix (see changes in determinant computation in `LinearAlgebra.cpp`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18435

Differential Revision: D14680352

Pulled By: soumith

fbshipit-source-id: af58dfc11fa53d9e8e0318c720beaf5502978cd8
2019-03-29 00:34:30 -07:00
Soumith Chintala
66628f78b7 Revert D14605905: [pytorch][PR] Add return_counts to torch.unique
Differential Revision:
D14605905

Original commit changeset: 555f5a12a8e2

fbshipit-source-id: c7874f5987893e956c022180a37763d88bba38db
2019-03-26 17:18:01 -07:00
Xiang Gao
e2730ddb21 Add return_counts to torch.unique (#18391)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/12598

This PR was originally authorized by ptrblck at https://github.com/pytorch/pytorch/pull/15495, but since there was no update for months after the request change, I clone that branch and resolve the code reviews here. Hope everything is good now. Especially, the implementation of count is changed from ptrblck's original algorithm to the one ngimel suggest, i.e. using `unique_by_key` and `adjacent_difference`.

The currently implementation of `_unique_dim` is VERY slow for computing inverse index and counts, see https://github.com/pytorch/pytorch/issues/18405. I will refactor `_unique_dim` in a later PR. For this PR, please allow me to keep the implementation as is.

cc: ptrblck ezyang ngimel colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18391

Reviewed By: soumith

Differential Revision: D14605905

Pulled By: VitalyFedyunin

fbshipit-source-id: 555f5a12a8e28c38b10dfccf1b6bb16c030bfdce
2019-03-25 20:38:17 -07:00
vishwakftw
291746f110 Rename trtrs to triangular_solve (#18213)
Summary:
Changelog:
- Renames `trtrs` to `triangular_solve` to remain consistent with `cholesky_solve` and `solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `triangular_solve` under the name `trtrs`, and add a deprecation warning to not promote usage.
- Move `isnan` to _torch_docs.py
- Remove unnecessary imports
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18213

Differential Revision: D14566902

Pulled By: ezyang

fbshipit-source-id: 544f57c29477df391bacd5de700bed1add456d3f
2019-03-21 14:27:21 -07:00
Gao, Xiang
7e6220393f Cleanup arg{min, max} (#17103)
Summary:
Why do we need this workaround? `PythonArgParser` handles these two cases well.

The discussion started at https://github.com/pytorch/pytorch/pull/6201#issuecomment-378724406. The conclusion at that time by goldsborough was:

> Because we wanted to allow `dim=None` in Python and route to a different function. Essentially the problem was wanting to wrap the C++ function in Python. AFAIK there is no way of translating `dim=None` behavior into C++? So Richard and I came up with this strategy

Maybe at that time `PythonArgParser` was not powerful enough to handle the routing of two function with same name but different C++ signature.

Will keep an eye on the CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17103

Differential Revision: D14523503

Pulled By: VitalyFedyunin

fbshipit-source-id: cae3e2678062da2eccd93b51d4050578c7a9ab80
2019-03-20 16:28:27 -07:00
Vishwak Srinivasan
421b508d55 Rename gesv to solve (#18060)
Summary:
Changelog:

- Renames `gesv` to `solve` to remain consistent with `cholesky_solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `solve` under the name `gesv`, and add a deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18060

Differential Revision: D14503117

Pulled By: zou3519

fbshipit-source-id: 99c16d94e5970a19d7584b5915f051c030d49ff5
2019-03-18 16:04:24 -07:00
Vishwak Srinivasan
3f1d0ee5d5 Deprecate torch.pstrf (#17866)
Summary:
Changelog:
- Add deprecation warning to torch.pstrf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17866

Differential Revision: D14405527

Pulled By: soumith

fbshipit-source-id: 73f3b7d61c60eb57e4bffd08112e552ae3e6dfdc
2019-03-11 12:27:52 -07:00
zou3519
68c5c66800 Warn about memory overlaps on expanded tensors (#17576)
Summary:
Eventually we should remove these when we're certain that all our ops
handle memory overlaps correctly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17576

Differential Revision: D14349990

Pulled By: zou3519

fbshipit-source-id: c3a09f6113b9b1bf93e7f13c0b426c45b2cdf21f
2019-03-06 17:44:04 -08:00
Jack Richter-Powell
7a51c03a30 Fixed typo in torch/functional.py w/r/t broadcast_tensors (#17642)
Summary:
In reference to #17574
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17642

Differential Revision: D14297177

Pulled By: ezyang

fbshipit-source-id: 968176ea3b46a0153da0fd9e6b40db314d29e51c
2019-03-03 10:08:41 -08:00
Gao, Xiang
722cbe3064 Move argsort to C++
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17099

Differential Revision: D14165671

Pulled By: ezyang

fbshipit-source-id: 3871de6874fe09871ebd9b8943c13c9af325bf33
2019-02-21 07:59:27 -08:00
ZhuBaohe
aae6b53c5b DOC: correct docstring for torch and torch.Tensor package (#16842)
Summary:
This PR is a simple fix for the mistake in the  "tensor"  and "torch.Tensor"doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16842

Differential Revision: D14020300

Pulled By: ezyang

fbshipit-source-id: 3ab04f1223d6e60f8da578d04d759e385d23acbb
2019-02-10 14:37:29 -08:00
Edward Yang
ab035d01e3 Remove unnecessary typing import. (#16777)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16777

Differential Revision: D13969679

Pulled By: ezyang

fbshipit-source-id: d4728797a5927ae32628621c654eadb93c0e7682
2019-02-05 21:12:35 -08:00
Thomas Viehmann
6a6983ed7f create type hint stub files for module torch (#12500)
Summary:
We have:

- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
  works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
  done in `torch/__init__.pyi.in`

For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.

An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500

Differential Revision: D13695553

Pulled By: ezyang

fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
2019-01-29 12:14:17 -08:00
Samuel Fadel
3c30cf3237 Update einsum documentation. (#16323)
Summary:
The documentation stated that operands to einsum should be a list of Tensors, not individual arguments. The function, however, now accepts individual arguments for each Tensor operand *and* a single argument consisting of a list of Tensors. The documentation was updated to reflect this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16323

Differential Revision: D13832647

Pulled By: soumith

fbshipit-source-id: c01c2b350f47674d3170337f493b0ee2ea381b3f
2019-01-26 18:00:57 -08:00
Wanchao Liang
c6503a4205 Revert D13540278: [pytorch][PR] Unhide unique from C++, make unique partially scriptable
Differential Revision:
D13540278

Original commit changeset: 3768c76a90b0

fbshipit-source-id: 7a31c239f9dca6ff467344d99820095addcae9d7
2019-01-22 12:22:40 -08:00
Xiang Gao
bed7db7772 Unhide unique from C++, make unique partially scriptable (#15256)
Summary:
This PR does three things:

~~Allow `int64_t?` in function schema,  which provide an elegant way of implementing null-able int arguments, as discussed in https://github.com/pytorch/pytorch/pull/15208#pullrequestreview-185230081~~

~~Originally implemented in https://github.com/pytorch/pytorch/pull/15235~~

~~Example:~~

```yaml
- func: myop(Tensor self, int64_t? dim=None) -> Tensor
  variants: function
```

~~cc: zou3519~~

Edit: implemented in https://github.com/pytorch/pytorch/pull/15234

Previously tried in https://github.com/pytorch/pytorch/pull/12064. There was a problem that C++ does not have kwarg support, which makes it confusing to know whether `unique(t, 1)` actually means `unique(t, dim=1)` or `unique(t, sorted=1)`.

Now I think I have a better idea on how to implement this: there are two ATen operators: `unique` and `unique_dim`. `unique` has the same signature as in python, and exported to both python and C++. `unique_dim` has signature `unique_dim(tensor, dim, sorted=False, return_inverse=False)`, and only exported to C++, which could be used more naturally for a C++ user.

Differential Revision: D13540278

Pulled By: wanchaol

fbshipit-source-id: 3768c76a90b0881f565a1f890459ebccbdfe6ecd
2019-01-21 12:31:37 -08:00
jiej
7c56db73d5 Moving torch.norm to ATen using TensorIterator (#15414)
Summary:
Adding supports for torch.nomr:
i. multi dimensions for dim
ii. dtype that specifies math/output tensor type
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15414

Differential Revision: D13702022

Pulled By: ezyang

fbshipit-source-id: da2676f2b6aff988889b1539d0de8ecd4946823a
2019-01-16 22:15:25 -08:00
Xiang Gao
1065e7cd24 Add itertools.{prod, combinations, combinations_with_replacement} like op to pytorch (#9393)
Summary:
closes https://github.com/pytorch/pytorch/issues/7580
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9393

Differential Revision: D13659628

Pulled By: zou3519

fbshipit-source-id: 3a233befa785709395a793ba8833413be394a6fd
2019-01-15 08:31:22 -08:00
surgan12
492b7d410b doc fixes (#15990)
Summary: fixes  #15597 ,  #15283 and #10258

Differential Revision: D13649905

Pulled By: soumith

fbshipit-source-id: 753f46c2c96c61fba460019d9ed3e0d047d42ee7
2019-01-13 23:38:39 -08:00
vishwakftw
b4c3268b23 Batched upper triangular, lower triangular (#15257)
Summary:
Changelog:

- Implements `triu` and `tril` for batches of 2D tensors.
- Remove TH/THC binding for `tril`
- Fix CUDA implementation
- Update docstrings for tril and triu.
- Remove mask-based `triu` and `tril` in cholesky forward and backward.
- Remove batched tril in torch.distributions.utils
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15257

Differential Revision: D13613888

Pulled By: mrshenli

fbshipit-source-id: 0949a05b9b8e974c1acfaf02a6284848ec5cc1c4
2019-01-09 19:46:39 -08:00
Peter Goldsborough
8232bd526f Move isnan to C++ (#15722)
Summary:
Wanted to use `Tensor.isnan` in C++, figured it'd be nice to have, so I made it into a tiny native function.

gchanan ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15722

Differential Revision: D13591315

Pulled By: goldsborough

fbshipit-source-id: a78bd22101fde87a0257f759b9bfcf3b4208f5fa
2019-01-08 10:42:33 -08:00
vishwakftw
7bb41e3953 Make btriunpack work for high dimensional batches and faster than before (#15286)
Summary:
Changelog:
- Optimize btriunpack by using `torch.where` instead of indexing, inplace operations instead of out place operations and avoiding costly permutations by computing the final permutation over a list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15286

Differential Revision: D13562038

Pulled By: soumith

fbshipit-source-id: e2c94cfab5322bf1d24bf56d7b056619f553acc6
2018-12-30 12:42:07 -08:00
Frank Zhang
d4712ee218 Added correct isinf handling for Integral tensors (#15489)
Summary:
Currently torch.isinf on integral tensor will raise RuntimeError: value cannot be converted to type int16_t without overflow: inf.
This pr will suppress the error and return false(0) for all integral tensors. The behavior will also be consistent with np.isinf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15489

Reviewed By: zou3519

Differential Revision: D13540786

Pulled By: flashhack

fbshipit-source-id: e730dea849da6a59f3752d347bcfbadfd12c6483
2018-12-26 06:36:09 -08:00
WeihuangXu
52699f0754 Change default value of unique to 'sorted=True'
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15379

Differential Revision: D13531287

Pulled By: ezyang

fbshipit-source-id: 1512da7d660dc413688d99264e6434897c3ac78c
2018-12-20 17:09:08 -08:00
vishwakftw
41e7e1bc40 Rename potrs to cholesky_solve (#15334)
Summary:
Changelog:
- Renames `potrs` to `cholesky_solve` to remain consistent with Tensorflow and Scipy (not really, they call their function chol_solve)
- Default argument for upper in cholesky_solve is False. This will allow a seamless interface between `cholesky` and `cholesky_solve`, since the `upper` argument in both function are the same.
- Rename all tests
- Create a tentative alias for `cholesky_solve` under the name `potrs`, and add deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15334

Differential Revision: D13507724

Pulled By: soumith

fbshipit-source-id: b826996541e49d2e2bcd061b72a38c39450c76d0
2018-12-19 12:31:24 -08:00
vishwakftw
fc30e2782c Remove deprecated info argument in btrifact (#14935)
Summary:
As specified in title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14935

Differential Revision: D13394449

Pulled By: soumith

fbshipit-source-id: 569d59414f3a1a43ea641bded4b5433eb53e3490
2018-12-09 15:59:30 -08:00
Tongzhou Wang
1c2273c8e9 fix stft arg types
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14800

Reviewed By: zou3519

Differential Revision: D13340574

Pulled By: SsnL

fbshipit-source-id: 8b0dbbe299d1a362da0ecc0b1c0dadb2543ded5d
2018-12-05 11:45:37 -08:00
Tongzhou Wang
562f61a662 Add missing space in stft doc
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14092

Reviewed By: soumith

Differential Revision: D13100177

Pulled By: SsnL

fbshipit-source-id: 4eeaa3d0c04212516941d8d5a266aafb53bd9672
2018-11-16 09:57:06 -08:00
vishwakftw
d714ecf879 Rename potrf to cholesky (#12699)
Summary:
This PR performs a renaming of the function `potrf` responsible for the Cholesky
decomposition on positive definite matrices to `cholesky` as NumPy and TF do.

Billing of changes
- make potrf cname for cholesky in Declarations.cwrap
- modify the function names in ATen/core
- modify the function names in Python frontend
- issue warnings when potrf is called to notify users of the change

Reviewed By: soumith

Differential Revision: D10528361

Pulled By: zou3519

fbshipit-source-id: 19d9bcf8ffb38def698ae5acf30743884dda0d88
2018-11-01 15:10:55 -07:00
Ailing Zhang
25db86cca5 Fix isfinite for int input (#12750)
Summary:
`torch.isfinite()` used to crash on int inputs.
```
>>> import torch
>>> a = torch.tensor([1, 2])
>>> torch.isfinite(a)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/scratch/pytorch/torch/functional.py", line 262, in isfinite
    return (tensor == tensor) & (tensor.abs() != inf)
RuntimeError: value cannot be converted to type int64_t without overflow: inf
```
But this is a easy special case and numpy also supports it.
```
>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.dtype
dtype('int64')
>>> np.isfinite(a)
array([ True,  True], dtype=bool)
```
So added a hacky line to handle non-floating-point input. Since pytorch raises exception when overflow, we can safely assume all valid int tensors are infinite numbers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12750

Differential Revision: D10428204

Pulled By: ailzhang

fbshipit-source-id: f39b2d0975762c91cdea23c766ff1e21d85d57a5
2018-10-17 11:48:25 -07:00
Thomas Viehmann
d34578026c Various example code fixes (#12707)
Summary:
- Fix broken sparse_coo_examples, update output
- Tensor(...) to tensor(...)
- Fix arguments to math.log to be floats

While the last might be debateable, mypy currently complains when passing an int to math.log. As it is not essential for our examples, let's be clean w.r.t. other people's expectations.

These popped up while checking examples in the context of  #12500 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12707

Differential Revision: D10415256

Pulled By: SsnL

fbshipit-source-id: c907b576b02cb0f89d8f261173dbf4b3175b4b8d
2018-10-16 21:59:40 -07:00
Xingdong Zuo
6dd71947ea remove unused Iterable, also avoid Python 3.7 deprecation warning
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12639

Differential Revision: D10377094

Pulled By: soumith

fbshipit-source-id: d904c4c1bbac900e44ea0b3b5635697159aec717
2018-10-15 02:30:22 -07:00
vishwakftw
48bc57fa8d Introduce chain_matmul (#12380)
Summary:
- This was one of the few functions left out from the list of functions in
  NumPy's `linalg` module
- `multi_mm` is particularly useful for DL research, for quick analysis of
  deep linear networks
- Added tests and doc string
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12380

Differential Revision: D10357136

Pulled By: SsnL

fbshipit-source-id: 52b44fa18d6409bdeb76cbbb164fe4e88224458e
2018-10-12 03:58:12 -07:00
Wei Yang
ecb3835387 change \gamma to \Gamma (#12214)
Summary:
- revert `\gamma` changes at landed PR: https://github.com/pytorch/pytorch/pull/12126
- minor fix for docs of `torch.norm()`

SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12214

Differential Revision: D10127337

Pulled By: weiyangfb

fbshipit-source-id: 15eb8abda39ec9e8b2e815e2a22096cae786995a
2018-10-01 11:31:18 -07:00
Wei Yang
5ffc915f26 fix docs (#12126)
Summary:
- fix https://github.com/pytorch/pytorch/issues/12120
- add `torch.argsort`, `torch.pdist`, `broadcast_tensors` to *.rst files
- add parameter dim to `torch.unique` doc
- fix table and args for `torch.norm`
- test plan: make html and check docs in browser

gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12126

Differential Revision: D10087006

Pulled By: weiyangfb

fbshipit-source-id: 25f65c43d14e02140d0da988d8742c7ade3d8cc9
2018-09-29 22:26:45 -07:00
yya007
b91b15d86e Implementing Matrix Norm for torch.norm (#11261)
Summary:
Currently, norm function only supports vector norm. This PR extends vector norm to matrix norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11261

Reviewed By: li-roy

Differential Revision: D9652379

Pulled By: yya007

fbshipit-source-id: 519b3fb80b563c17c56a24675c7b0e46bf5a3a1c
2018-09-20 14:43:13 -07:00
Amitesh Arora
4ee0a78ee6 varargs for meshgrid (#11600)
Summary:
Adds vararg support for meshgrid and adds checks for all the tensor arguments to have the same dtype and device.

Fixes: [#10823](https://github.com/pytorch/pytorch/issues/10823), #11446

The earlier pull request closed without any changes because I had some rebasing issues, so I made another pull request to close out #10823. Sorry for the inconvenience.

Differential Revision: D9892876

Pulled By: ezyang

fbshipit-source-id: 93d96cafc876102ccbad3ca2cc3d81cb4c9bf556
2018-09-18 07:41:31 -07:00
Tongzhou Wang
de460c7ad3 Improvements on conv/pool/fold/stft/ParamDict docs (#11106)
Summary:
Also fixes some incorrect formula rendering.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11106

Differential Revision: D9752433

Pulled By: SsnL

fbshipit-source-id: 535fc8498638e8b645757fc7535d8771992b7d21
2018-09-11 08:56:21 -07:00
Thomas Viehmann
d4060d2d0e Implement torch.tensordot (#10025)
Summary:
Fixes: #8988
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10025

Reviewed By: ezyang

Differential Revision: D9540967

Pulled By: yf225

fbshipit-source-id: 6ba2a7777162983977db884b693e6f4543b31aeb
2018-09-04 21:10:07 -07:00
pbialecki
2cc98d8df7 Adds dim argument to torch.unique (#10423)
Summary:
Initial version of `unique` supporting a `dim` argument.

As discussed in [this issue](https://github.com/pytorch/pytorch/issues/9997) I added the `dim` argument to `torch.unique` with the same behavior like [numpy](https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.unique.html).

Since the implementation is based on `std/thrust::unique`, the `tensor` always needs to be sorted. The `sorted` argument in `torch.unique` does not have any function, as in the CUDA version of the plain `torch.unique`.

To check the performance and equal behavior between `torch.unique` and `np.unique`, I've used [this gist](https://gist.github.com/ptrblck/ac0dc862f4e1766f0e1036c252cdb105).

Currently we achieve the following timings for an input of `x = torch.randint(2, (1000, 1000))`:
(The values are calculated by taking the average of the times for both dimension)

| Device | PyTorch (return_inverse=False) | Numpy (return_inverse=False) | PyTorch (return_inverse=True) | Numpy (return_inverse=True) |
| --- | --- | --- | --- | --- |
| CPU | ~0.007331s | ~0.022452s | ~0.011139s | ~0.044800s |
| GPU | ~0.006154s | - | ~0.105373s | - |

Many thanks to colesbury for the awesome mentoring and the valuable advices on the general implementation and performance issues!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10423

Differential Revision: D9517289

Pulled By: soumith

fbshipit-source-id: a4754f805223589c2847c98b8e4e39d8c3ddb7b5
2018-08-29 16:26:09 -07:00
Thomas Viehmann
151e7de893 varargs for einsum (#10067)
Summary:
Implemented via a wrapper, thank you Richard for the suggestion!

Fixes: #9929
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10067

Differential Revision: D9083388

Pulled By: soumith

fbshipit-source-id: 9ab21cd35278b01962e11d3e70781829bf4a36da
2018-08-15 15:13:25 -07:00
Owen Anderson
7a377b9a53 Add torch.argsort mirroring similar functionality in numpy. (#9600)
Summary:
Per issue #9542
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9600

Differential Revision: D8952338

Pulled By: resistor

fbshipit-source-id: c3f69d62858ad9458ec5ae563e3ff24b1c9283a7
2018-08-03 11:45:47 -07:00
Rob Kunkle
6e85112f12 Adding katex rendering of equations, and required edits to equations. (#8848)
Summary:
This fixes issue #8529.

- Adds Katex extension to conf.py and requirements.txt
- Fixes syntax differences in docs
- Should allow documentation pages to render faster
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8848

Reviewed By: soumith

Differential Revision: D8677702

Pulled By: goodlux

fbshipit-source-id: c4a832c5879e0eebcb14763b35a41663331ba23f
2018-08-02 12:25:17 -07:00
Richard Zou
6b338c8026 Implement torch.broadcast_tensors (#10075)
Summary:
This exposes expand_outplace to python. Fixes #8076. Fixes #10041.

I didn't name it torch.broadcast because numpy.broadcast does something
slightly different (it returns an object with the correct shape
information).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10075

Differential Revision: D9125816

Pulled By: zou3519

fbshipit-source-id: ebe17c8bb54a73ec84b8f76ce14aff3e9c56f4d1
2018-08-01 19:18:34 -07:00
Tongzhou Wang
27455e9c78 Use _six for inf and nan (#9500)
Summary:
Things like `float('inf')` are actually quite expensive.
```py
In [1]: import math

In [2]: %timeit -n 200 math.inf
49.3 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)

In [3]: %timeit -n 200 float('inf')
194 ns ± 39.1 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9500

Reviewed By: soumith

Differential Revision: D8876229

Pulled By: SsnL

fbshipit-source-id: 78602b76bb53d5588910b58270930c0bd413d2d7
2018-07-18 10:40:29 -07:00
bhushan23
5eaed750c2 Implementing torch.isfinite (#9487)
Summary:
fixes #9132
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9487

Reviewed By: soumith

Differential Revision: D8875529

Pulled By: SsnL

fbshipit-source-id: d1b8aa825d202cfbdca27897da6a8bc1b714f856
2018-07-18 08:25:20 -07:00
Tongzhou Wang
050a2588b5 change stft to have consistent signature with librosa (#9497)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9497

Fixes #7883 by using `rfft`.

It's worth noting that this is BC breaking. And it's impossible to detect the change because the two signatures before and after this change supports a common subset of calling patterns, e.g., `stft(Tensor, int, int)`. (some other calling patterns will raise error).

soumith and I plan to change the current `stft` interface because it is a bit messy and non-standard. rafaelvalle suggested us that `librosa` is a good reference API to align with. After discussing with soumith and ezyang , and given that `stft` is only out for 1 release, I decide to go with directly changing the signature. Also, my understanding is that most researchers in this field will welcome this change as `librosa` seems to be the golden-standard here. (it doesn't yet support all `pad_mode` but those will become available if added to `F.pad`.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9308

Reviewed By: ezyang

Differential Revision: D8806148

Pulled By: SsnL

fbshipit-source-id: f6e8777d0c34d4a4d7024e638dc9c63242e8bb58
2018-07-17 10:55:43 -07:00
bhushan
5eb9d40cc6 Introducing IsInf (#9169)
Summary:
torch.isinf - checks element wise +/- inf implements #9132
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9169

Reviewed By: SsnL

Differential Revision: D8768614

Pulled By: zou3519

fbshipit-source-id: dd1b5f6c976deb421d626e22cdd25500ec04d796
2018-07-15 07:55:09 -07:00
Liyuan Liu
bcd20f96e0 update docs (#9423)
Summary:
minor modification: fixed the incorrect comment format for ```split_size_or_sections``` (https://pytorch.org/docs/master/torch.html#torch.split)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9423

Differential Revision: D8841367

Pulled By: soumith

fbshipit-source-id: 2d09a38ce8d278ac29b3864e8d09a91cd296196c
2018-07-13 13:55:35 -07:00
Xiang Gao
a615baa51f move unbind to ATen
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/8587

Differential Revision: D8764086

Pulled By: soumith

fbshipit-source-id: 7f311cf13c341040e1f2cf4a8f05723e32d38947
2018-07-08 16:46:35 -07:00
Tongzhou Wang
742912512c Move signal window functions to ATen; add Blackman window (#8130)
* Move signal window functions to ATen; add Blackman window

* fix cuda test not checking scipy
2018-06-08 11:37:46 -04:00
li-roy
d564ecb4a5 Update docs with new tensor repr (#6454)
* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Link to torch.no_grad, etc, from torch doc

* Add dtype aliases to table

* regen docs again

* Tensor attributes stub page

* link to inplace sampling

* Link torch.dtype, device, and layout

* fix dots after nonfinite floats

* better layout docs
2018-04-21 07:35:37 -04:00
Tongzhou Wang
1c01eabd3c
Codemod to update our codebase to 0.4 standard (#6641)
* Codemod to update our codebase to 0.4 standard

* Update some of the test scri[ts

* remove Variable in test_clip_grad_value

* fix _symbolic_override_wrapper_maker
2018-04-17 22:06:54 -04:00
Tongzhou Wang
0dff2b5e35
[fft] [3 of 3] Implements backward of fft ifft rfft irfft (#5537)
* change irfft signal_sizes arg to be the last

* add docs for fft, ifft, rfft, irfft; update doc for stft

* fix typo in window function docs

* improve gradcheck error message

* implement backward of fft, ifft, rfft, irfft

* add grad tests for fft, ifft, rfft, irfft

* fix nits and typos from #6118

* address comments
2018-04-10 22:09:36 -04:00
Kento NOZAWA
3b58b859b2 Fix typos in docs (#6389) 2018-04-07 12:41:15 -04:00
Tongzhou Wang
fc7aa5c3be Fix torch.dtype getting incorrectly rendered as torch.dpython:type by sphinx (#6358) 2018-04-06 14:59:22 -04:00
Peter Goldsborough
9ba70856a1 Add max_values and argmax convenience functions to ATen (#6201)
* Add max_values and argmax convenience functions to ATen

* Add documentation for torch.argmax/argmin and skip max_values

* Add tests for argmax/argmin

* Dont default the dim argument

* Use dim=0 in test_torch.py for argmax tests

* Implement argmin()  and argmax() without dim

* Call .contiguous() before .view(-1)
2018-04-04 15:53:26 -04:00
Tongzhou Wang
06a697785c Add dtype to torch.*_window; Add dtype.is_floating_point (#6158) 2018-04-03 21:19:30 -04:00
Sam Gross
6b3a4637d6
Make the tensor type torch.Tensor instead of torch.autograd.Variable (#5785)
This changes type(tensor) to return `torch.Tensor` instead of
`torch.autograd.Variable`.

This requires a few implementation changes:

 - torch.Tensor is now a regular Python class instead of a
   pseudo-factory like torch.FloatTensor/torch.DoubleTensor
 - torch.autograd.Variable is just a shell with a __new__ function.
   Since no instanes are constructed it doesn't have any methods.
 - Adds torch.get_default_dtype() since torch.Tensor.dtype returns
   <attribute 'dtype' of 'torch._C._TensorBase' objects>
2018-04-03 16:29:25 -04:00
Vishwak Srinivasan
76a283db40 [ready] General Documentation Improvements - 2 (#5685)
* Fix some minor errors in existing docs.

* Fix Convolution and Pooling docs in torch.nn.functional

* Cleaned up torch.nn.functional docs

* Address @SsnL 's comments

* Add multiplication sign missing in docs

* Fix more typos, and clear some warnings

* Change infinity symbol in LPPool2d

* Revert some changes in torch.nn.functional

* Few more minor changes
2018-03-13 09:47:43 -04:00
Tongzhou Wang
71d73211f4 [ready] torch.* doc update for Variable/Tensor merge, and other improvements (#5443)
* 1. Update doc to reflect changes in Variable/Tensor merge, and new printing style
2. Remove functions in torch/functional.py that are already implemented with native_function
3. Add set_detault_tensor_type doc

* fix torch.split

* py2 unicode string fix

* update torch.gels doc

* address @fmassa 's comments

* double-colon
2018-03-08 23:02:38 -05:00
Vishwak Srinivasan
32b3841553 [ready] General documentation improvements (#5450)
* Improvize documentation
1. Add formula for erf, erfinv
2. Make exp, expm1 similar to log, log1p
3. Symbol change in ge, le, ne, isnan

* Fix minor nit in the docstring

* More doc improvements
1. Added some formulae
2. Complete scanning till "Other Operations" in Tensor docs

* Add more changes
1. Modify all torch.Tensor wherever required

* Fix Conv docs
1. Fix minor nits in the references for LAPACK routines

* Improve Pooling docs
1. Fix lint error

* Improve docs for RNN, Normalization and Padding
1. Fix flake8 error for pooling

* Final fixes for torch.nn.* docs.
1. Improve Loss Function documentation
2. Improve Vision Layers documentation

* Fix lint error

* Improve docstrings in torch.nn.init

* Fix lint error

* Fix minor error in torch.nn.init.sparse

* Fix Activation and Utils Docs
1. Fix Math Errors
2. Add explicit clean to Makefile in docs to prevent running graph generation script
while cleaning
3. Fix utils docs

* Make PYCMD a Makefile argument, clear up prints in the build_activation_images.py

* Fix batch norm doc error
2018-03-08 13:21:12 -05:00
Christian S. Perone
8720d72d7c Fixing inconsistent docs (missing parameters docs). (#5620) 2018-03-08 10:42:40 +01:00
theweiho
c2721ab503 Add per-element unique op for CPU (#5503)
Questions/possible future works:

How to template-ize to extend support beyond LongTensor?
How to check if autograd works (and if not, how to add explicit gradient)?
CUDA support?
Testing command:
DEBUG=1 NO_CUDA=1 MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build && DEBUG=1 NO_CUDA=1 MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py develop && python3 test/test_torch.py

Partially fixes #2031

* Initial commit for unique op

* Working unique with test

* Make inverse indices shape conform to input

* flake8 whitespace removal

* address review comment nits

* Expose fn and add docs. Explicitly declare no gradients

* Trial generic dispatch implementation

* Add tests for generics

* flake8 whitespace

* Add basic CUDA error throwing and templateize set

* Explicit contiguous and AT_DISPATCH_ALL_TYPES return

* Remove extraneous numpy conversion

* Refactor out .data calls

* Refactored to variable return length API with wrapper fn as opposed to returning a 0-length tensor, per off-line reviewer comments

* Remove A

* Don't use hidden torch._unique() in test

* Fix documentations
2018-03-07 18:16:51 -05:00
Sam Gross
30ec06c140
Merge Variable and Tensor classes (#5225)
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.

To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.

There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:

 https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
2018-02-23 18:03:31 -05:00
Choongwoo Han
cf71385ec9 Implement torch.isnan (#5273)
* Implement torch.isnan

* Simple python implementation

* Fix typo
2018-02-19 19:46:35 -05:00
gchanan
b984c0b6e9
Various testing and utility improvements including torch.testing module. (#4726)
* Various testing and utility improvements including torch.testing module.

1) Remove method definition for randn_like since ones_like, zeros_like do not have methods.
2) Add an empty_like native function for creating a tensor with uninitialized values.
3) Add an is_floating_point() native function, similar to is_signed().
4) Add a torch.testing module loosely modeled after numpy.testing; currently it contains
   make_non_contiguous (moved from test_autograd) and randn_like (wrapper around the VariableFunction).
5) Remove code from test_autograd and test_nn that is responsible for generating grad_outputs to use
   with gradgradcheck.  These now use gradgradcheck's own generating code.  This fixes
   test_nn.py with scalars because gradgradcheck does the right thing here already.

* Rename parameter.

* Fix parameter usages.
2018-01-19 10:54:41 -05:00
Sam Gross
720c7b1e2c
Move repeat to torch/_utils.py (#4712)
This moves the implementation of repeat to _utils so that the autograd
function can call it directly instead of relying on forward being called
on tensors.

This also removes _range, which was previously necessary because we
shadowed the built-in range() function.
2018-01-17 17:30:43 -05:00
ptrblck
7c729e6321 - added size_splits to functional (#3837) 2018-01-04 09:52:47 -05:00
SsnL
9a48f8d7c3 add tests for btrifact_with_info and doc for btriunpack 2017-12-24 03:08:28 +08:00
gchanan
41c9959ef7
Enable functional torch.where. (#4298) 2017-12-21 13:55:57 -05:00
Tongzhou Wang
d8b2e5d091 Add python only default init expression; Implement stft, hann/hamming/bartlett window. (#4095)
* implement stft

* addressed comments; implemented window functions; added support for python only default initialization
2017-12-18 12:28:23 -05:00
Tongzhou Wang
fe12ac57a4 Improve docs for torch and torch.Tensor (#3969)
* doc overhaul

* update split doc
2017-12-01 14:56:48 -05:00
Tongzhou Wang
c681b03d37 Add determinant function on variable; Add backward on svd (#3816)
* determinant on variable

* svd bwd
2017-12-01 13:22:46 -05:00
lynic
54cabb8bf3 Correct negative dim behavior in torch.stack (#2084)
Fixes #1950
2017-07-13 16:29:31 -04:00
Sam Gross
8a4eb50ed1 Speed up torch.matmul for 3D+ x 2D/1D tensors (#1931)
If the left tensor is 3D+ and the right tensor is at most 2D, we can
fold the batch into the matrix dimension and use torch.mm instead of
torch.bmm. In practice, this is faster especially if the right tensor is
column major.
2017-06-28 17:43:21 -04:00
gchanan
4e356528b4 Add torch.matmul function. (#1780)
* Add torch.matmul function.

Includes test_torch, test_autograd and docs changes.

* Add __all__ to functional so imports are accidentally imported.

* Include unbind in __all__.

* Add matmul case for when one argument is 1-dimensional and the other
at least 3-dimensional.

* Add squeeze_ to Variable.

* Use squeeze_ instead of squeeze for matmul.
2017-06-14 08:14:53 -04:00
Sam Gross
3ab074b3c5 Fix torch.stack() with Variable inputs (#1345) 2017-04-24 12:20:51 -04:00
Sam Gross
24d92b5d9f Concatenate directly into shared memory when constructing batches (#1323)
This saves an extra memory copy, which speeds up data loading a bit
(5-10% with accimage).

As part of this change:

 * torch.cat accepts keyword argument out
 * sepcifiying out=None is treated like not specifying out
2017-04-22 03:40:30 -04:00
Soumith Chintala
15267ac009 fix typo 2017-04-15 13:08:58 -04:00
Brandon Amos
be146fd721 Add btriunpack and update the btrifact test. 2017-03-29 13:42:13 +02:00
Adam Paszke
825e919eb8 Add torch.unbind 2017-02-01 21:48:11 +01:00
Luke Yeager
e7c1e6a8e3 [pep8] Fix most lint automatically with autopep8
Here's the command I used to invoke autopep8 (in parallel!):

    git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i

Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.

Also configures flake8 to match pep8's behavior.

Also configures TravisCI to check the whole project for lint.
2017-01-28 01:15:51 +01:00
Adam Paszke
8a20e22239 Add torch.stack 2016-12-31 16:25:39 -05:00
Adam Paszke
7c5014d803 Add torch.split, torch.chunk and change default dim of cat to 0 2016-12-31 16:25:39 -05:00