Summary:
Add the gpu kernel version.
The parallelism I went with performs poorly when there are a large number of vectors, but they're all short, as I don't allocate the thread pool to wrap in that case.
Test Plan
---------
```
python -m unittest test_torch.TestTorch.test_pdist_{empty,scipy} test_nn.TestNN.test_pdist{,_zeros,_empty_row,_empty_col,_cpu_gradgrad_unimplemented,_cuda_gradgrad_unimplemented} test_jit.TestJitGenerated.test_nn_pdist
```
Current performance specs are a little underwhelming, I'm in the process of debugging.
size | torch | torch cuda | scipy
-----|-------|------------|------
16 x 16 | 9.13 µs ± 3.55 µs | 9.86 µs ± 81.5 ns | 15.8 µs ± 1.2 µs
16 x 1024 | 15 µs ± 224 ns | 9.48 µs ± 88.7 ns | 88.7 µs ± 8.83 µs
1024 x 16 | 852 µs ± 6.03 µs | 7.84 ms ± 6.22 µs | 4.7 ms ± 166 µs
1024 x 1024 | 34.1 ms ± 803 µs | 11.5 ms ± 6.24 µs | 273 ms ± 6.7 ms
2048 x 2048 | 261 ms ± 3.5 ms | 77.5 ms ± 41.5 µs | 2.5 s ± 97.6 ms
4096 x 4096 | 2.37 s ± 154 ms | 636 ms ± 2.97 µs | 25.9 s ± 394 ms
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11102
Differential Revision: D9697305
Pulled By: erikbrinkman
fbshipit-source-id: 2b4f4b816c02b3715a85d8db3f4e77479d19bb99
Summary:
In #9466 I got rid of storage views and eliminated all places where
they were used... OR SO I THOUGHT. In actuality, under certain
conditions (specifically, if you trained a CUDA multiprocessing model
shared over CUDA IPC and then serialized your parameters), you could
also serialize storage slices to the saved model format. In #9466,
I "fixed" the case when you loaded the legacy model format (really,
just unshared the storages--not strictly kosher but if you aren't
updating the parameters, shouldn't matter), but NOT the modern model format, so
such models would fail.
So, I could have applied the legacy model format fix too, but
hyperfraise remarked that he had applied a fix that was effectively
the same as unsharing the storages, but it had caused his model to
behave differently. So I looked into it again, and realized that
using a custom deleter, I could simulate the same behavior as old
storage slices. So back they come.
In principle, I could also reimplement storage views entirely using
our allocators, but I'm not going to do that unless someone really
really wants it.
Fixes#10120.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11314
Reviewed By: ailzhang
Differential Revision: D9671966
Pulled By: ezyang
fbshipit-source-id: fd863783d03b6a6421d6b9ae21ce2f0e44a0dcce
Summary:
Allows mulitplication of e.g. numpy.float32 with tensors.
This came up with #9468
If you want this and after the other patch is done, I'll add tests (but that would be conflicting, so I prefer to wait).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9659
Differential Revision: D8948078
Pulled By: weiyangfb
fbshipit-source-id: c7dcc57b63e2f100df837f70e1299395692f1a1b
Summary:
* improve docker packages (install OpenBLAS to have at-compile-time LAPACK functionality w/ optimizations for both Intel and AMD CPUs)
* integrate rocFFT (i.e., enable Fourier functionality)
* fix bugs in ROCm caused by wrong warp size
* enable more test sets, skip the tests that don't work on ROCm yet
* don't disable asserts any longer in hipification
* small improvements
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10893
Differential Revision: D9615053
Pulled By: ezyang
fbshipit-source-id: 864b4d27bf089421f7dfd8065e5017f9ea2f7b3b
Summary:
Also add single grad whitelist to the jit test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10782
Reviewed By: ezyang
Differential Revision: D9583378
Pulled By: erikbrinkman
fbshipit-source-id: 069e5ae68ea7f3524dec39cf1d5fe9cd53941944
Summary:
Initial version of `unique` supporting a `dim` argument.
As discussed in [this issue](https://github.com/pytorch/pytorch/issues/9997) I added the `dim` argument to `torch.unique` with the same behavior like [numpy](https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.unique.html).
Since the implementation is based on `std/thrust::unique`, the `tensor` always needs to be sorted. The `sorted` argument in `torch.unique` does not have any function, as in the CUDA version of the plain `torch.unique`.
To check the performance and equal behavior between `torch.unique` and `np.unique`, I've used [this gist](https://gist.github.com/ptrblck/ac0dc862f4e1766f0e1036c252cdb105).
Currently we achieve the following timings for an input of `x = torch.randint(2, (1000, 1000))`:
(The values are calculated by taking the average of the times for both dimension)
| Device | PyTorch (return_inverse=False) | Numpy (return_inverse=False) | PyTorch (return_inverse=True) | Numpy (return_inverse=True) |
| --- | --- | --- | --- | --- |
| CPU | ~0.007331s | ~0.022452s | ~0.011139s | ~0.044800s |
| GPU | ~0.006154s | - | ~0.105373s | - |
Many thanks to colesbury for the awesome mentoring and the valuable advices on the general implementation and performance issues!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10423
Differential Revision: D9517289
Pulled By: soumith
fbshipit-source-id: a4754f805223589c2847c98b8e4e39d8c3ddb7b5
Summary:
Fix#10345, which only happens in CUDA case.
* Instead of returning some random buffer, we fill it with zeros.
* update torch.symeig doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10645
Reviewed By: soumith
Differential Revision: D9395762
Pulled By: ailzhang
fbshipit-source-id: 0f3ed9bb6a919a9c1a4b8eb45188f65a68bfa9ba
Summary:
When 0-sized dimension support is added, we expect an empty sparse tensor to be a 1-dimensional tensor of size `[0]`, with `sparseDims == 1` and `denseDims == 0`. Also, we expect the following invariants to be preserved at all times:
```
_sparseDims + _denseDims = len(shape)
_indices.shape: dimensionality: 2, shape: (_sparseDims, nnz)
_values.shape: dimensionality: 1 + _denseDims. shape: (nnz, shape[_sparseDims:])
```
This PR fixes various places where the invariants are not strictly enforced when 0-sized dimension support is enabled.
Tested and `test_sparse.py` passes locally on both CPU and CUDA with the `USE_TH_SIZE_ZERO_DIM` flag.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9279
Differential Revision: D8936683
Pulled By: yf225
fbshipit-source-id: 12f5cd7f52233d3b26af6edc20b4cdee045bcb5e
Summary:
Implemented via a wrapper, thank you Richard for the suggestion!
Fixes: #9929
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10067
Differential Revision: D9083388
Pulled By: soumith
fbshipit-source-id: 9ab21cd35278b01962e11d3e70781829bf4a36da
Summary:
Test only for existence for now. I had to skip a lot of them so there a FIXME in the test.
Also I'm not testing torch.* because of namespace issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10311
Differential Revision: D9196341
Pulled By: SsnL
fbshipit-source-id: 9c2ca1ffe660bc1cc664474993f8a21198525ccc
Summary:
* some small leftovers from the last PR review
* enable more unit test sets for CI
* replace use of hcRNG w/ rocRAND (docker image was already updated w/ newer rocRAND)
* use rocBLAS instead of hipBLAS to allow convergence w/ Caffe2
* use strided_batched gemm interface also from the batched internal interface
* re-enable Dropout.cu as we now have philox w/ rocRAND
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10406
Reviewed By: Jorghi12
Differential Revision: D9277093
Pulled By: ezyang
fbshipit-source-id: 7ef2f6fe4ead77e501ed7aea5c3743afe2466ca2
Summary:
This PR for the ROCm target does the following:
* enable some unit tests on ROCm
* fix a missing static_cast that breaks BatchNorm call on ROCm
* fix BatchNorm to work on ROCm w/ ROCm warp sizes etc
* improve the pyhipify script by introducing kernel scope to some transpilations and other improvements
* fix a linking issue on ROCm
* for more unit test sets: mark currently broken tests broken (to be fixed)
* enable THINLTO (phase one) to parallelize linking
* address the first failing of the elementwise kernel by removing non-working ROCm specialization
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10266
Differential Revision: D9184178
Pulled By: ezyang
fbshipit-source-id: 03bcd1fe4ca4dd3241f09634dbd42b6a4c350297
Summary:
This exposes expand_outplace to python. Fixes#8076. Fixes#10041.
I didn't name it torch.broadcast because numpy.broadcast does something
slightly different (it returns an object with the correct shape
information).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10075
Differential Revision: D9125816
Pulled By: zou3519
fbshipit-source-id: ebe17c8bb54a73ec84b8f76ce14aff3e9c56f4d1
Summary:
This causes numpy to yield to the torch functions,
e.g. instead of numpy array/scalar __mul__ converting the tensor to
an array, it will now arrange for the Tensor __rmul__ to be called.
Fixes case 2 of #9468
I also makes case 3 and 4 equivalent but does not fix them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9651
Differential Revision: D8948079
Pulled By: ezyang
fbshipit-source-id: bd42c04e96783da0bd340f37f4ac3559e9bbf8db
Summary:
These could use some autograd tests, which are coming in a later PR, but using them in autograd is probably pretty rare.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9947
Reviewed By: ezyang
Differential Revision: D9032778
Pulled By: gchanan
fbshipit-source-id: fa5a6509d3bac31ea4fae25143e82de62daabfbd
Summary:
```
This adds TensorIterator, a helper class for computing element-wise
operations that's intended to replace the CPU and CUDA apply utils
functions.
CPU kernels are implemented as functions that operate on strided 1-d
tensors compared to CPUApplyUtils which operated individual elements. This
allows the kernels to handle vectorization, while TensorIterator handles
parallelization and non-coalesced dimensions.
GPU kernels continue to operate on elements, but the number of
specializations is reduced. The contiguous case remains the same. The
non-contiguous case uses a single (reduced) shape for all operands and
the fast integer division from THCIntegerDivider. To avoid extra
specializations for indexing with 64-bits, large operations are split
into smaller operations that can be indexed with 32-bits.
Major semantic changes:
- No more s_add, s_mul, s_div, or s_sub. Broadcasting is handled by
TensorIterator. The autograd engine performs the reduction assuming
standard broadcasting if the gradient shape does not match the
expected shape. Functions that do not use standard broadcasting rules
should either continue to trace the expand calls or handle the
reduction in their derivative formula.
- Use ONNX v7, which supports broadcasting ops.
Performance impact:
- Small increased fixed overhead (~0.5 us)
- Larger overhead for wrapped numbers (~2.5 us)
- No significant change for ops on contiguous tensors
- Much faster worst-case performance for non-contiguous GPU tensors
- Faster CPU bias addition (~2x)
- Faster GPU bias addition (~30% faster)
Future work:
- Decrease overhead, especially for wrapping numbers in Tensors
- Handle general inter-type operations
- Extend to unary ops and reductions
- Use buffering for compute-bound operations on non-contiguous tensors
(pull in from CPUApplyUtils)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8919
Differential Revision: D8677600
Pulled By: colesbury
fbshipit-source-id: 61bc9cc2a36931dfd00eb7153501003fe0584afd
Summary:
The primary use-site of typeString was checked_cast_tensor.
I did a little more than I needed in this patch, to set
the stage for actually deleting the tensor type.
Specifically, I modified checked_cast_tensor to explicitly
take Backend and ScalarType, the idea being that once we
remove the tensor subclasses, we will delete the T template
parameter.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9764
Differential Revision: D8969196
Pulled By: ezyang
fbshipit-source-id: 9de92b974b2c28f12ddad13429917515810f24c6
Summary:
Fixes: #9754
Maybe this could also make its way into 0.4.1, it is a severe debugging headache if you hit this...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9755
Reviewed By: ezyang
Differential Revision: D8967178
Pulled By: zou3519
fbshipit-source-id: 151ed24e3a15a0c67014e411ac808fb893929a42
Summary:
…unctions.
This also unifies the error checkign between scatter/scatterAdd on CUDA.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9658
Differential Revision: D8941527
Pulled By: gchanan
fbshipit-source-id: 750bbac568f607985088211887c4167b67be11ea