Summary:
note: breaking the original diff D55225818 into 3 parts (top-level renaming, higher-order-op subgraphs, constant input de/serialization) because of its size.
Stacked PR to restore original names to placeholder nodes, replacing the default names arg0_1, arg1_1, ...
This PR supports constant argument placeholder (e.g. forward(self, x, y=1)) names and de/serialization, by adding a name field for ConstantArguments in the graph signature, and ConstantInputSpec in the input specs for serialization.
Test Plan: verification checks on placeholder names for all export() calls, unit test in test/export/test_export.py
Differential Revision: D55506949
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123590
Approved by: https://github.com/angelayi, https://github.com/zhxchen17
Summary:
This PR restores original names to placeholder nodes, replacing the default names arg0_1, arg1_1, and so on.
User inputs now follow the signature of mod.forward(), for example forward(x, y) produces nodes x, y. If the tensors are nested in dictionaries, lists, tuples, or dataclasses, the names are a concatenation of the path to the tensor, e.g. x = {'a': torch.randn(4), 'b': [torch.randn(4), torch.randn(4)]} produces nodes x_a, x_b_0, x_b_1.
Parameters, buffers, constants, and custom objects follow the FQN of the object, prefixed by "p", "b", "c", and "obj" respectively. For example, self.bar.l0.weight gets you p_bar_l0_weight.
Effect tokens are named token_1, token_2, and so on, since they are not grounded in model inputs or named attributes.
note: breaking the original diff into 3 parts (top-level renaming, higher-order-op subgraphs, constant input de/serialization) because of its size.
Examples:
```python
# params, buffers, constants, inputs, torch.cond
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_l0_weight: "f32[4, 4]", p_l0_bias: "f32[4]", c_alpha: "f32[4]", b_beta: "f32[4]", x_0_a: "f32[4, 4]", y: "f32[4, 4]"):
# No stacktrace found for following nodes
mul: "f32[4, 4]" = torch.ops.aten.mul.Tensor(x_0_a, x_0_a)
t: "f32[4, 4]" = torch.ops.aten.t.default(p_l0_weight); p_l0_weight = None
addmm: "f32[4, 4]" = torch.ops.aten.addmm.default(p_l0_bias, y, t); p_l0_bias = y = t = None
return addmm
# model code
class Bar(torch.nn.Module):
def forward(self, x):
return x * x
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.bar = Bar()
self.l0 = torch.nn.Linear(4, 4)
self.alpha = torch.randn(4)
self.register_buffer('beta', torch.randn(4))
def forward(self, x, y):
x = x[0]['a']
mul = self.bar(x)
z1 = self.l0(y)
return z1
# custom objects, dataclasses, tokens, constant inputs
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, token_1: "f32[0]", obj_attr, data_x: "f32[4, 4]", data_y: "f32[4, 4]", mode):
# No stacktrace found for following nodes
mul: "f32[4, 4]" = torch.ops.aten.mul.Scalar(data_x, 30); data_x = None
div: "f32[4, 4]" = torch.ops.aten.div.Tensor_mode(data_y, 1.0, rounding_mode = 'floor'); data_y = None
add: "f32[4, 4]" = torch.ops.aten.add.Tensor(mul, div); mul = div = None
with_effects = torch._higher_order_ops.effects.with_effects(token_1, torch.ops._TorchScriptTesting.takes_foo.default, obj_attr, add); token_1 = obj_attr = add = None
getitem: "f32[0]" = with_effects[0]
getitem_1: "f32[4, 4]" = with_effects[1]; with_effects = None
return (getitem, getitem_1)
# model code
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, data, a=1.0, mode="floor"):
x = self.attr.add_tensor(data.x) + torch.div(data.y, a, rounding_mode=mode)
x = torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
return x
dataclass
class DataClass:
x: Tensor
y: Tensor
register_dataclass_as_pytree_node(
DataClass,
serialized_type_name="test.DataClass"
)
args = (DataClass(x=torch.randn(4, 4), y=torch.randn(4, 4)), )
kwargs = {'mode': 'floor'}
ep = torch.export.export(Foo(), args, kwargs, strict=False)
```
Test Plan: verification checks on placeholder names for all export() calls, unit test in test/export/test_export.py
Differential Revision: D55456418
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122904
Approved by: https://github.com/angelayi, https://github.com/thiagocrepaldi
This PR only adds abstract class registration logic without touching existing tests so they still trace with real script object. The added tests are only for registration APIs and test error messages.
Our design is that the abstract implementation should be in Python. This is much better in terms of usability. But this also has implications for custom op that takes script object as input, which is detailed later in this stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122622
Approved by: https://github.com/zou3519
ghstack dependencies: #122619, #122620, #122621
This PR adds the bare minimum functionality to get torchbind working in an e2e testable way on PT2.
It implements:
* ProxyTensor support
* Simple torch.export support (proxytensor-only path, e.g. non-strict).
* add some tests exercising the path.
Because all this is not fully baked, I hide the functionality behind a feature flag (`enable_torchbind_tracing()`) so it does not affect regular users for now.
Still on the agenda:
* Dynamo support
* Actual FakeMode support
* Mutability support
Hoping to get this first bit in as a standalone, as it will unblock some more extensive experimentation/testing going on internally.
Differential Revision: [D51825372](https://our.internmc.facebook.com/intern/diff/D51825372/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117697
Approved by: https://github.com/SherlockNoMad