Commit Graph

44 Commits

Author SHA1 Message Date
Wei-Sheng Chin
bca75fe97a [MAIA] [Autocast] Enable autocast on MAIA device (#148511)
Fixes #148510.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148511
Approved by: https://github.com/albanD
2025-03-18 03:46:22 +00:00
Simon Mahns
6939a56e13 [autocast][pytorch] Support autocast for MTIA (#145627)
Summary: Add autocast support to MTIA

Reviewed By: egienvalue

Differential Revision: D68572548

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145627
Approved by: https://github.com/egienvalue
2025-01-25 03:24:59 +00:00
Roy Hvaara
bc69a19139 [MPS] Add support for bf16 autocast (#139390)
This PR adds support for bf16 autocast. Most of the code and ideas are copied from #99272.

Most of the heavy lifting was done by AI.

Fixes #139386

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139390
Approved by: https://github.com/malfet

Co-authored-by: Kulin Seth <kulin_seth@apple.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-11-20 19:52:28 +00:00
Roy Hvaara
4b83302585 [MPS] Update error message for supported autocast type (#139192)
Autocast in MPS currently only supports dtype of `torch.float16`. This PR updates the error message to reflect this.

This PR was created using [Copilot Workspace](https://copilot-workspace.githubnext.com/pytorch/pytorch/issues/139190?shareId=5b510fda-380c-4e86-8e91-6b67a078f180) with no human input other than clicking buttons.

Fixes #139190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139192
Approved by: https://github.com/malfet
2024-10-30 16:48:29 +00:00
Shangdi Yu
a47bb4a393 Fix autocast for non-strict export (#137495)
Summary:

add testing for autocast and set_grad nodes for export_for_training. In export_for_training, we do not wrap the autocast and set_grad node in to HOP, but we should still have the set_grad_enabled/autocast nodes.

add support for autocast in non-strict export. Previously, `_enter_autocast` and `_exit_autocast` nodes don't show up in the export graph when we use `strict=False`.

- In autocast's enter and exit function, we dispatch to `PreDispatchTorchFunctionMode.__torch_function__`.
 if we have PreDispatchTorchFunctionMode in our function_mode_stack, the call stack looks like below. This is mostly the same call stack as strict mode, except strict mode enters [here](https://www.internalfb.com/code/fbsource/[0d4f1135cacdb26c6e01d5dce1ce52a15d61ee48]/xplat/caffe2/torch/_dynamo/variables/ctx_manager.py?lines=806).
```
- torch.amp.autocast.__enter__()'s torch.overrides.handle_torch_function
- torch.fx.experimental.proxy_tensor.TorchFunctionMetadataMode.__torch_function__
- torch.amp._enter_autocast()'s torch.overrides.handle_torch_function
- PreDispatchTorchFunctionMode.__torch_function__
```
- in `PreDispatchTorchFunctionMode.__torch_function__`, we create the autocast nodes.
- to match the strict mode behavior, we let the input node to the `_exist_autocast` node be the corresponding `_enter_autocast` node. This requires us to maintain a stack in `PreDispatchTorchFunctionMode`.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export  -- -r  test_export_with_autocast
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export  -- -r  test_export_with_set_grad
```

Differential Revision: D64016023

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137495
Approved by: https://github.com/bdhirsh
2024-10-16 17:39:00 +00:00
Kulin Seth
144fde4fd2 [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Need to run inductor/test_cpu_select_algorithm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Co-authored-by: Roy Hvaara <roy@lightyear.no>
2024-09-05 23:23:17 +00:00
PyTorch MergeBot
2764bee942 Revert "[MPS] Add support for autocast in MPS (#99272)"
This reverts commit 6919e8baab.

Reverted https://github.com/pytorch/pytorch/pull/99272 on behalf of https://github.com/clee2000 due to Broke test/inductor/test_cpu_select_algorithm.py::TestSelectAlgorithmCPU::test_quantized_linear_amx_batch_size_3_in_features_128_out_features_64_bias_False_cpu on sm86 jobs [GH job link](https://github.com/pytorch/pytorch/actions/runs/10252979157/job/28367091621) [HUD commit link](6919e8baab) Not caught on PR due to bad TD ([comment](https://github.com/pytorch/pytorch/pull/99272#issuecomment-2269808857))
2024-08-05 19:59:04 +00:00
Kulin Seth
6919e8baab [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet
2024-08-05 17:02:30 +00:00
PyTorch MergeBot
07450e9713 Revert "[MPS] Add support for autocast in MPS (#99272)"
This reverts commit 6240cfd5c7.

Reverted https://github.com/pytorch/pytorch/pull/99272 on behalf of https://github.com/jeanschmidt due to introduced breakages in trunk ([comment](https://github.com/pytorch/pytorch/pull/99272#issuecomment-2203033719))
2024-07-02 12:29:51 +00:00
Kulin Seth
6240cfd5c7 [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet
2024-07-02 01:49:52 +00:00
Xuehai Pan
d80939e5e9 [BE] enable UFMT for torch/storage.py (#127706)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127706
Approved by: https://github.com/ezyang
2024-06-27 23:16:24 +00:00
Jing Xu
5fba5d83f0 add xpu for amp (#127276)
As support for Intel GPU has been upstreamed, this PR is to add the XPU-related contents to AMP doc.

Co-authored-by: Yu, Guangye <guangye.yu@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127276
Approved by: https://github.com/dvrogozh, https://github.com/albanD, https://github.com/malfet
2024-06-20 21:49:35 +00:00
Aaron Orenstein
afe15d2d2f Flip default value for mypy disallow_untyped_defs [3/11] (#127840)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127840
Approved by: https://github.com/oulgen
2024-06-08 18:28:01 +00:00
Yu, Guangye
e7a42702f9 generalize custom_fwd&custom_bwd to be device-agnostic (#126531)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126531
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/albanD, https://github.com/EikanWang
ghstack dependencies: #126527
2024-05-25 06:48:16 +00:00
Yu, Guangye
d17be10df1 make torch.amp.autocast more generic (#125103)
# Motivation
As discussed in [#124479](https://github.com/pytorch/pytorch/pull/124479), `torch.amp.autocast` can NOT be completely equivalent to `torch.cuda.amp.autocast` and `torch.cpu.amp.autocast` since `torch.amp.autocast` has NOT the default `dtype` for CPU (`torch.bfloat16` by default) and CUDA (`torch.float16` by default) respectively. We would like `torch.amp.autocast` to be more generic to help the developer/customer write the device-agnostic code. Because there are not enough reasons to add device-specific autocast `torch.xxx.amp.autocast` for each device backend.

# Solution
When `None` is passed to `dtype`, we should use `torch.get_autocast_dtype` to get the related dtype for each backend. Meanwhile, `torch.get_autocast_dtype` is necessary to be supported in JIT path for BC.

# Additional Context
With this PR, `torch.amp.autocast(device_type='cuda')` is equivalent to `torch.cuda.amp.autocast`.
Add two new UTs to cover this change in eager and jit path respectively.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125103
Approved by: https://github.com/albanD, https://github.com/jgong5, https://github.com/gujinghui
2024-05-08 12:13:26 +00:00
Alana Xiang
6761b49551 Ensure autocast device_type is a string + Unit test (#125014)
Reviving #124873 (already approved) to resolve CLA issues

Fixes #124738

(Marked as draft until I get local unit tests to run)

Edit: Tests passing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125014
Approved by: https://github.com/mikaylagawarecki, https://github.com/soulitzer
2024-04-28 16:27:30 +00:00
Yu, Guangye
19a83eacb5 add new API torch.amp.is_autocast_available (#124938)
# Motivation
expose `torch._is_autocast_available` to `torch.amp.is_autocast_available` as a public api.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124938
Approved by: https://github.com/albanD
2024-04-26 08:45:20 +00:00
Yu, Guangye
cdc66e9dc3 refactor autocast python APIs (#124479)
# Motivation
Refactor autocast usage scenario in `torch/amp/autocast_mode.py` and `torch/utils/checkpoint.py` to fix the bug - convention conflict between `torch.xxx.get_autocast_xxx_dtype` defined in `autocast_mode.py` and `torch.xxx.get_autocast_dtype` defined in `checkpoint.py`.

# Solution
Use device-agnostic APIs like `torch.get_autocast_dtype`, ..., instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124479
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/EikanWang, https://github.com/albanD
ghstack dependencies: #124359
2024-04-25 14:33:33 +00:00
CaoE
c47d2b8035 Add Half support for CPU autocast on eager mode (#112484)
Add Half support for CPU autocast on eager mode since common operators have Half support on CPU.
https://github.com/pytorch/pytorch/issues/96093.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112484
Approved by: https://github.com/leslie-fang-intel, https://github.com/ezyang
2023-11-21 20:08:28 +00:00
Yeounoh Chung
e2e9d15726 Unblock float16 dtype for xla autocasting (#109554)
`torch.autocast` with `xla` backend has been restricted to `torch.bfloat16`. This shouldn't be the case anymore.

This works with `xla::cast( ..., type=f16)`
```
IR {
  %0 = f32[] prim::Constant(), xla_shape=f32[], value=1
  %1 = f32[3,2]{1,0} aten::expand(%0), xla_shape=f32[3,2]{1,0}, size=(3, 2), dynamic_dims=(0, 0)
  %2 = f16[3,2]{1,0} xla::cast(%1), xla_shape=f16[3,2]{1,0}, type=f16, dtype=Half, stype=Float
  %3 = f32[] prim::Constant(), xla_shape=f32[], value=1
  %4 = f32[2,3]{1,0} aten::expand(%3), xla_shape=f32[2,3]{1,0}, size=(2, 3), dynamic_dims=(0, 0)
  %5 = f16[2,3]{1,0} xla::cast(%4), xla_shape=f16[2,3]{1,0}, type=f16, dtype=Half, stype=Float
  %6 = f16[2,2]{1,0} aten::mm(%5, %2), xla_shape=f16[2,2]{1,0}, ROOT=0
}
```

This will allow PyTorch/XLA to extend its autocast implementation to use `xla` backend for `float16` type as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109554
Approved by: https://github.com/JackCaoG, https://github.com/bdhirsh
2023-09-21 03:19:44 +00:00
leslie-fang-intel
ee0e04ac48 Allow float dtype when Autocast CPU Disabled (#107348)
**Summary**
Fix the https://github.com/pytorch/pytorch/issues/100565 by allowing float32 data type when Autocast CPU is disabled. Current behavior is:
- When autocast is disabled and user passes in float data type, it works well.
- When autocast is enabled and user passes in float data type, a warn message throws `UserWarning: In CPU autocast, but the target dtype is not supported. Disabling autocast.` to disable autocast automatically

**TestPlan**

```
python -u -m pytest -s -v test_autocast.py -k test_autocast_disabled_with_fp32_dtype
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107348
Approved by: https://github.com/jgong5, https://github.com/Neilblaze, https://github.com/albanD
2023-09-01 00:49:44 +00:00
Edward Z. Yang
3bf922a6ce Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249
Approved by: https://github.com/Skylion007
2023-07-29 23:37:30 +00:00
Ruoxi
5afc2f5069 Documentation for torch.autocast (#95760)
- [x] Corrected examples for CUDA devices.
- [x] Information about availability of `torch.autocast`.

Fixes #95547

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95760
Approved by: https://github.com/leslie-fang-intel, https://github.com/kit1980
2023-07-22 03:56:34 +00:00
Brian Hirsh
875f60399e pre_dispatch tracing: support autocast and no_grad/enable_grad ctx managers, add a pre_dispatch_eager dynamo backend (#103024)
This PR adds support for `enable_grad`/`no_grad`/`autocast` context managers getting properly traced in `pre_dispatch` tracing. The stuff in this PR includes:
- I added a torch function mode that runs during make_fx pre_dispatch tracing, `ProxyTorchFunctionMode`. It directly intercepts the torch ops that run during the above context managers, and adds them to the current graph instead of executing them
- `enable_grad` and `no_grad` currently desugar into `torch._C.set_grad_enabled(bool)`, but this API isn't currently overrideable by torch function so I added the ability to interpose there
- the `torch.amp` context managers don't currently have a nice equivalent, like `set_autocast_enabled(state)`, so I ended up adding two new API's: `torch.amp._set_autocast_enabled` and `torch.amp._set_autocast_disabled`. If you look at how the context manager is implemented, it ends up calling several different state-changing functions, some of which depend on the backend - so I figured that it would be cleaner just to add a new API (that should probably only be used by tracing) - but open to feedback
- I added a new dynamo backend, `compile(backend="pre_dispatch_eager")`. When pre_dispatch tracing becomes always-on in inductor, it will be another potential surface for bugs. I also added a test file for it (`test/dynamo/test_pre_dispatch.py`).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103024
Approved by: https://github.com/ezyang
2023-06-29 14:17:42 +00:00
Ashok Kumar Kannan
41866a2ead Fix missing mandatory device_type argument in autocast docstring (#97223)
Fixes #[92803](https://github.com/pytorch/pytorch/issues/92803)
![Screenshot from 2023-03-21 12-28-14](https://user-images.githubusercontent.com/100136654/226538769-141f3b9e-0de2-4e86-8e42-d5a4a7413c6f.png)
![Screenshot from 2023-03-21 12-28-29](https://user-images.githubusercontent.com/100136654/226538777-9e719090-75c0-46f7-8594-5efcb0a46df6.png)
![Screenshot from 2023-03-21 12-29-36](https://user-images.githubusercontent.com/100136654/226538783-399a0e60-ffc9-4d73-801c-8cfce366d142.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97223
Approved by: https://github.com/albanD, https://github.com/malfet
2023-06-27 01:54:54 +00:00
Meghan
6ff4548b6e [AMP] Support XLA:TPU (#96370)
With https://github.com/pytorch/xla/pull/5148, https://github.com/pytorch/xla/pull/4740

With these changes
XLA:GPU users should use `torch.cuda.amp.autocast()` for AMP with float16
XLA:TPU users should use `torch.amp.autocast('xla')` for AMP with bfloat16

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96370
Approved by: https://github.com/bdhirsh, https://github.com/malfet
2023-06-23 19:46:42 +00:00
Charlie West-Taylor
5eb7325bc7 Add autocast support for IPU (#103890)
As part of this, a new `AutocastIPU` dispatch key has been added.

There's an existing PR, #85043, to make `Autocast` a proper per-backend functionality key, but it ran into issues with layering with other functionality keys and went stale.

This has been tested in the out-of-tree IPU PyTorch backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103890
Approved by: https://github.com/albanD
2023-06-22 15:38:45 +00:00
xiaolil1
faa7eb81c6 change error_message for XPU Autocast data type check (#102073)
XPU autocast supports bf16 and fp16 data types, we are going to change the error_message for that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102073
Approved by: https://github.com/jgong5
2023-05-24 08:36:43 +00:00
shibo
48463f687a refactor macro with AMP (#99285)
Fixes #ISSUE_NUMBER
as the tiltle, optimize the macro with AMP and put the macro in `.hpp` file, so that we can use it for custom device.  @bdhirsh  @albanD
as we talked at this discuss, optimize the macros so that we can add a new macro for other devide, and move these macros to `.hpp` so that we can include these macros with custom device to configure the ops.
https://dev-discuss.pytorch.org/t/improve-the-extension-with-privateuse1-for-custom-device/1196/7

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99285
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2023-04-19 01:00:00 +00:00
shibo
d03799f9a5 optimize the AMP func name in custom_device_mod (#98052)
Fixes #ISSUE_NUMBER
1、optimize the func name of AMP in custom device module,use `torch.foo.set_autocast_enable` instead of `torch.foo.set_autocast_foo_enable`.
2、In AMP with custom device,use `custom_device_mod.set_autocast_enable` instead of `getattr(custom_device_mod,  "set_autocast_enable"`, because we have check that `custom_device_mod` hasattr `set_autocast_enable` before.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98052
Approved by: https://github.com/bdhirsh
2023-03-31 17:04:32 +00:00
Markus Hennerbichler
ee6b19bd4c Error only if autocast actually enabled (#96097)
I am trying to use bfloat16 AMP on a range of devices, using the `enabled` argument to actually enable/disable AMP, like this:
```python
with torch.cuda.amp.autocast(enabled=use_amp, dtype=torch.bfloat16):
```

However, this raises a RuntimeError even if enabled=False.

```
  File "/venv/lib/python3.8/site-packages/torch/amp/autocast_mode.py", line 221, in __init__
    raise RuntimeError('Current CUDA Device does not support bfloat16. Please switch dtype to float16.')
RuntimeError: Current CUDA Device does not support bfloat16. Please switch dtype to float16.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96097
Approved by: https://github.com/ngimel, https://github.com/kit1980
2023-03-21 03:13:13 +00:00
shibo
6b691b99da add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-20 20:27:35 +00:00
PyTorch MergeBot
a8f36dd646 Revert "add amp support for custom backend (#96188)"
This reverts commit cf12edee02.

Reverted https://github.com/pytorch/pytorch/pull/96188 on behalf of https://github.com/kit1980 due to Broke some linalg tests : https://github.com/pytorch/pytorch/actions/runs/4420037607/jobs/7750708339
2023-03-15 00:03:19 +00:00
shibo
cf12edee02 add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-14 20:43:21 +00:00
Xuehai Pan
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
Amadeusz Skrzypczak
6be9d9a630 Add AutocastHPU support (#84927)
New dispatch key and necessary functions are added to PyTorch. Backend implementation will be added in the external library.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84927
Approved by: https://github.com/bdhirsh
2022-10-12 19:37:16 +00:00
ProGamerGov
8def154e00 Fix multiple docstring type mistakes (#82474)
### Description

* Docstrings using `(tuple of ints)` shows up as `(tuple of python:ints)`, so I fixed them by making the `int` no longer plural. Example: https://pytorch.org/docs/stable/generated/torch.permute.html#torch.permute
* A docstring type in JIT had one of its types incorrectly highlighted as code. Example: https://pytorch.org/docs/stable/generated/torch.jit.script.html#torch.jit.script
* I found some docstring type usages of `string` that had not yet been converted to `str` after #82410
* Some docstrings incorrectly listed their defaults inside the docstring types.
* I also found a docstring that was missing its type

### Testing
No testing should be required.

---

In the developer guidelines, there should probably be standards listed for the docstring types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82474
Approved by: https://github.com/albanD
2022-07-29 17:45:37 +00:00
ProGamerGov
357b7d589c Fix docstring inconsistencies: string -> str, boolean -> bool (#82410)
### Description

Throughout the PyTorch docs and codebase, the `string` type in docstrings is referred to by two separate names. This leads to inconsistent docs, like you can see here: https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html#torch.nn.Conv3d

This PR fixes this issue by ensuring that all mentions of the string type in docstrings, are using the same format that Sphinx generates hyperlinks for.

### Testing
No testing should be required for this change

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82410
Approved by: https://github.com/jbschlosser
2022-07-28 21:29:57 +00:00
anjali411
f68f77610a Add __all__ to torch.nn.quantized, fx.passes, ao.nn and amp submodules (#80376)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80376
Approved by: https://github.com/albanD
2022-06-27 21:36:27 +00:00
albanD
4aca751921 remove spurious warning in amp (#79203)
fix https://github.com/pytorch/pytorch/issues/72527
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79203
Approved by: https://github.com/anjali411
2022-06-10 21:53:58 +00:00
leslie-fang-intel
f2d9fc18f1 Update amp document with CPU Training/Inference Examples (#77244)
This PR mainly updates the document with CPU Training/Inference Examples.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77244
Approved by: https://github.com/H-Huang
2022-05-11 15:42:45 +00:00
Guo Yejun
6f991fc5fc add XPU support for autocast
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75250
Approved by: https://github.com/bdhirsh
2022-04-19 21:18:23 +00:00
leslie-fang-intel
3a112ebb57 add autocast cpu doc
As discussed in https://github.com/pytorch/pytorch/issues/55374#issuecomment-968333614, here we update the cpu autocast operation list in autocast API document.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68567
Approved by: https://github.com/ezyang
2022-03-22 02:02:43 +00:00