Commit Graph

26 Commits

Author SHA1 Message Date
CaoE
6c0a2d8bbf Fix the check for can_use_expanded_index_path (#140351)
Fixes #129093

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140351
Approved by: https://github.com/mingfeima, https://github.com/cpuhrsch
2024-11-15 05:52:23 +00:00
PyTorch MergeBot
a0e2f62edd Revert "Include support for the scatter gather cuda kernels to allow for comp… (#124809)"
This reverts commit 9e24c263f9.

Reverted https://github.com/pytorch/pytorch/pull/124809 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/124809#issuecomment-2091751002))
2024-05-02 21:36:18 +00:00
Danial Javady
9e24c263f9 Include support for the scatter gather cuda kernels to allow for comp… (#124809)
Fixes #121965

This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.

C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.

Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.

Environment:
3080 & WSL 2. `nvcc` is at 12.4.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/mikaylagawarecki
2024-05-01 23:58:35 +00:00
PyTorch MergeBot
4d410155b2 Revert "Include support for the scatter gather cuda kernels to allow for comp… (#124809)"
This reverts commit e09f98c705.

Reverted https://github.com/pytorch/pytorch/pull/124809 on behalf of https://github.com/clee2000 due to windows build failure is real, https://github.com/pytorch/pytorch/actions/runs/8910674030/job/24470387612#step:11:11236 is the correct failure line, ignore the statement saying build passed, batch is errorcodes arent propagating again ([comment](https://github.com/pytorch/pytorch/pull/124809#issuecomment-2088680371))
2024-05-01 16:02:02 +00:00
Danial Javady
e09f98c705 Include support for the scatter gather cuda kernels to allow for comp… (#124809)
Fixes #121965

This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.

C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.

Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.

Environment:
3080 & WSL 2. `nvcc` is at 12.4.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/eqy, https://github.com/mikaylagawarecki
2024-05-01 14:31:31 +00:00
Justin Chu
73e1455327 [BE] Enable ruff's UP rules and autoformat test/ (#105434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434
Approved by: https://github.com/albanD
2023-07-19 20:36:06 +00:00
yanbing-j
053654b9cf Optimize scatter_add/scatter_reduce in BFloat16/Half data type in CPU backend (#103427)
### Description

This PR is to optimize scatter_add/scatter_reduce of BFloat16/Half data type in CPU backend, which is one task in https://github.com/pyg-team/pytorch_geometric/issues/7057. Main point is creating a buffer among threads to accumulate intermediate data as fp32 data type.

Next step:

 - [x] Add benchmarks
 - [x] Extend to Half
 - [x] Simplify code

### Performance test (Updated)

Test BFloat16 in Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz
With jemalloc and iomp

Single socket (40C)
![image](https://github.com/pytorch/pytorch/assets/61222868/4b4342f1-8cc3-46f7-81f5-651becd9b1e3)

Single core
![image](https://github.com/pytorch/pytorch/assets/61222868/09e5f700-2c2e-4208-979e-74b85474dea6)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103427
Approved by: https://github.com/mingfeima, https://github.com/albanD
2023-07-13 09:34:29 +00:00
PyTorch MergeBot
f8aedf1efe Revert "Optimize scatter_add/scatter_reduce in BFloat16/Half data type in CPU backend (#103427)"
This reverts commit da7675621e.

Reverted https://github.com/pytorch/pytorch/pull/103427 on behalf of https://github.com/clee2000 due to sorry but it looks like this pr broke test_scatter_gather_ops.py::TestScatterGatherCPU::test_scatter_expanded_index_cpu_bfloat16 on periodic parallelnative testing da7675621e https://github.com/pytorch/pytorch/actions/runs/5477783108/jobs/9977608393 ([comment](https://github.com/pytorch/pytorch/pull/103427#issuecomment-1624008753))
2023-07-06 17:02:03 +00:00
yanbing-j
da7675621e Optimize scatter_add/scatter_reduce in BFloat16/Half data type in CPU backend (#103427)
### Description

This PR is to optimize scatter_add/scatter_reduce of BFloat16/Half data type in CPU backend, which is one task in https://github.com/pyg-team/pytorch_geometric/issues/7057. Main point is creating a buffer among threads to accumulate intermediate data as fp32 data type.

Next step:

 - [x] Add benchmarks
 - [x] Extend to Half
 - [x] Simplify code

### Performance test (Updated)

Test BFloat16 in Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz
With jemalloc and iomp

Single socket (40C)
![image](https://github.com/pytorch/pytorch/assets/61222868/4b4342f1-8cc3-46f7-81f5-651becd9b1e3)

Single core
![image](https://github.com/pytorch/pytorch/assets/61222868/09e5f700-2c2e-4208-979e-74b85474dea6)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103427
Approved by: https://github.com/mingfeima, https://github.com/albanD
2023-07-06 01:23:56 +00:00
Valentin Andrei
9bc68fcd25 [pytorch] Accelerate indexing_backward_kernel with duplicates (#99441 attempt 2) (#100505)
By knowing the stride value ahead of time, we can simplify the kernel code as follows:

If stride == 1 we can use the whole warp to reduce the gradients
If stride < warp_size we don't need the internal while (start_feature < stride) loop as blockDim.x is always 32

This changes improve the performance of the kernel when duplicates are present and do not affect the performance with low amount of duplicates. The implementation is deterministic.

The proposed implementation uses opmath_t to accumulate in registers the gradient values so when using FP16/BF16 it may overflow if the number of elements is large. This is different from the initial implementation who accumulates in scalar_t and does not overflow. In addition, when the stride is 1, we are using warp shuffles to sum the gradient so the order of the addition is slightly different than a reference implementation which causes some minor numerical differences when compared to a reference.

TEST CODE:

```
# The first element is the number of iterations.
# The second represents the number of unique elements. If
# set to 0, the number of unique elements is equal to the
# number of elements.
# The remaining elements are the tensor dimensions.

basic_indexing_tests = [
    [10, 0, 12345],
    [10, 4, 12345],
    [10, 16, 512, 512, 32],
    [10, 0, 4, 4],
    [10, 0, 32, 32],
    [10, 8, 32, 32],
    [10, 8, 64, 32, 16],
    [10, 0, 64, 32, 16],
    [10, 16, 512, 512, 32],
    [10, 0, 675, 999, 13],
    [10, 0, 123, 456, 31],
    [10, 0, 512, 512, 32],
    [10, 4, 512, 512, 32],
    [10, 2, 512, 512, 32],
    [10, 0, 128, 128, 16, 16],
    [10, 8, 128, 126, 16, 16],
    [10, 4, 128, 126, 16, 16],
    [10, 0, 64, 64, 16, 16, 16],
    [10, 8, 64, 64, 16, 16, 16],
    [10, 2, 64, 64, 16, 16, 16],
    [10, 1, 64, 64, 16, 16, 16],
]

def run_basic_indexing_on_device(x, index, expected, device_string, iters):
    x_dev = x.to(device_string)
    x_dev = x_dev.detach().requires_grad_()
    index_dev = index.to(device_string)

    # Run backward pass; keep gradients and measure time
    torch.cuda.synchronize()
    t_bw_s = time()
    for _ in range(iters):
        y = x_dev[index_dev]
        z = y.sum()
        z.backward()
    torch.cuda.synchronize()
    t_bw_s = (time() - t_bw_s) / iters

    return (x_dev.grad, t_bw_s)

def run_basic_indexing_test(test_input):
    tensor_size = tuple(test_input[:5])
    niters = test_input[0]
    num_unique = test_input[1]
    tensor_size = tuple(test_input[2:])

    numel = 1
    for dim in tensor_size:
        numel *= dim
    if num_unique == 0:
        num_unique = numel

    index = torch.randint(0, num_unique, tensor_size, dtype=torch.long, device="cpu")
    x = torch.randn((numel,), dtype=torch.float32, device="cuda")

    index = index.detach()
    x = x.detach().requires_grad_()

    (cpu_grad, t_bw_cpu) = run_basic_indexing_on_device(x, index, numel / 2, "cpu", 1)
    (gpu_grad, t_bw_gpu) = run_basic_indexing_on_device(x, index, numel / 2, "cuda", 1)

    max_delta = torch.max(torch.abs(cpu_grad - gpu_grad.to("cpu")))
    missmatches = torch.nonzero(torch.abs(cpu_grad - gpu_grad.to("cpu")))

    (gpu_grad_perf, t_gpu) = run_basic_indexing_on_device(
        x, index, numel / 2, "cuda", niters
    )

    print(
        "test = {}, delta = {:.5f}, missmatches = {} duration_ms = {:.3f}".format(
            tuple(test_input), max_delta, missmatches, t_gpu * 1000.0
        )
    )

    if torch.numel(missmatches) > 0:
        print("cpu grad = {}", cpu_grad[missmatches])
        print("gpu grad = {}", gpu_grad[missmatches])
```

RESULTS:

```
Default Implementation

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.726
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.867
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 80.514
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.689
test = (1, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.547
test = (1, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.537
test = (1, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.199
test = (1, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.584
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 80.055
test = (1, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.411
test = (1, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.419
test = (1, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.048
test = (1, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 307.633
test = (1, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 606.403
test = (1, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 4.099
test = (1, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 76.813
test = (1, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 148.760
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 16.547
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 317.583
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1204.800
test = (1, 1, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2412.133

Small Stride Kernel Version

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.904
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.156
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 308.878
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.566
test = (1, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.540
test = (1, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.550
test = (1, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.868
test = (1, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.656
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 307.856
test = (1, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 6.624
test = (1, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.837
test = (1, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 6.274
test = (1, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1127.040
test = (1, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2123.942
test = (1, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 3.282
test = (1, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 288.997
test = (1, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 547.267
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 12.844
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1178.934
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 4262.042
test = (1, 1, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8172.318

Stride 1 Kernel Version

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.692
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.834
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 81.023
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.631
test = (100, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.491
test = (100, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.477
test = (50, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.561
test = (50, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.516
test = (16, 10, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 126.455
test = (10, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.238
test = (10, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.520
test = (10, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 7.854
test = (10, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 306.327
test = (10, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 610.498
test = (5, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 3.684
test = (5, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 75.604
test = (5, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 148.679
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 16.525
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 315.095
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1214.715
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100505
Approved by: https://github.com/ngimel
2023-05-03 23:52:58 +00:00
PyTorch MergeBot
1114673c90 Revert "[pytorch] Accelerate indexing_backward_kernel with duplicates (#99441)"
This reverts commit 97afbcbc80.

Reverted https://github.com/pytorch/pytorch/pull/99441 on behalf of https://github.com/ngimel due to breaks ROCM ([comment](https://github.com/pytorch/pytorch/pull/99441#issuecomment-1531804487))
2023-05-02 16:46:04 +00:00
valentinandrei
97afbcbc80 [pytorch] Accelerate indexing_backward_kernel with duplicates (#99441)
By knowing the stride value ahead of time, we can simplify the kernel code as follows:

If `stride == 1` we can use the whole warp to reduce the gradients
If `stride < warp_size` we don't need the internal `while (start_feature < stride)` loop as `blockDim.x` is always 32

This changes improve the performance of the kernel when duplicates are present and do not affect the performance with low amount of duplicates. The implementation is deterministic.

The proposed implementation uses `opmath_t` to accumulate in registers the gradient values so when using FP16/BF16 it may overflow if the number of elements is large. This is different from the initial implementation who accumulates in `scalar_t` and does not overflow. In addition, when the stride is 1, we are using warp shuffles to sum the gradient so the order of the addition is slightly different than a reference implementation which causes some minor numerical differences when compared to a reference.

TEST CODE:

```
# The first element is the number of iterations.
# The second represents the number of unique elements. If
# set to 0, the number of unique elements is equal to the
# number of elements.
# The remaining elements are the tensor dimensions.

basic_indexing_tests = [
    [10, 0, 12345],
    [10, 4, 12345],
    [10, 16, 512, 512, 32],
    [10, 0, 4, 4],
    [10, 0, 32, 32],
    [10, 8, 32, 32],
    [10, 8, 64, 32, 16],
    [10, 0, 64, 32, 16],
    [10, 16, 512, 512, 32],
    [10, 0, 675, 999, 13],
    [10, 0, 123, 456, 31],
    [10, 0, 512, 512, 32],
    [10, 4, 512, 512, 32],
    [10, 2, 512, 512, 32],
    [10, 0, 128, 128, 16, 16],
    [10, 8, 128, 126, 16, 16],
    [10, 4, 128, 126, 16, 16],
    [10, 0, 64, 64, 16, 16, 16],
    [10, 8, 64, 64, 16, 16, 16],
    [10, 2, 64, 64, 16, 16, 16],
    [10, 1, 64, 64, 16, 16, 16],
]

def run_basic_indexing_on_device(x, index, expected, device_string, iters):
    x_dev = x.to(device_string)
    x_dev = x_dev.detach().requires_grad_()
    index_dev = index.to(device_string)

    # Run backward pass; keep gradients and measure time
    torch.cuda.synchronize()
    t_bw_s = time()
    for _ in range(iters):
        y = x_dev[index_dev]
        z = y.sum()
        z.backward()
    torch.cuda.synchronize()
    t_bw_s = (time() - t_bw_s) / iters

    return (x_dev.grad, t_bw_s)

def run_basic_indexing_test(test_input):
    tensor_size = tuple(test_input[:5])
    niters = test_input[0]
    num_unique = test_input[1]
    tensor_size = tuple(test_input[2:])

    numel = 1
    for dim in tensor_size:
        numel *= dim
    if num_unique == 0:
        num_unique = numel

    index = torch.randint(0, num_unique, tensor_size, dtype=torch.long, device="cpu")
    x = torch.randn((numel,), dtype=torch.float32, device="cuda")

    index = index.detach()
    x = x.detach().requires_grad_()

    (cpu_grad, t_bw_cpu) = run_basic_indexing_on_device(x, index, numel / 2, "cpu", 1)
    (gpu_grad, t_bw_gpu) = run_basic_indexing_on_device(x, index, numel / 2, "cuda", 1)

    max_delta = torch.max(torch.abs(cpu_grad - gpu_grad.to("cpu")))
    missmatches = torch.nonzero(torch.abs(cpu_grad - gpu_grad.to("cpu")))

    (gpu_grad_perf, t_gpu) = run_basic_indexing_on_device(
        x, index, numel / 2, "cuda", niters
    )

    print(
        "test = {}, delta = {:.5f}, missmatches = {} duration_ms = {:.3f}".format(
            tuple(test_input), max_delta, missmatches, t_gpu * 1000.0
        )
    )

    if torch.numel(missmatches) > 0:
        print("cpu grad = {}", cpu_grad[missmatches])
        print("gpu grad = {}", gpu_grad[missmatches])
```

RESULTS:

```
Default Implementation

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.726
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.867
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 80.514
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.689
test = (1, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.547
test = (1, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.537
test = (1, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.199
test = (1, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.584
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 80.055
test = (1, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.411
test = (1, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.419
test = (1, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.048
test = (1, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 307.633
test = (1, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 606.403
test = (1, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 4.099
test = (1, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 76.813
test = (1, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 148.760
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 16.547
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 317.583
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1204.800
test = (1, 1, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2412.133

Small Stride Kernel Version

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.904
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.156
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 308.878
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.566
test = (1, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.540
test = (1, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.550
test = (1, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2.868
test = (1, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.656
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 307.856
test = (1, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 6.624
test = (1, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.837
test = (1, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 6.274
test = (1, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1127.040
test = (1, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 2123.942
test = (1, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 3.282
test = (1, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 288.997
test = (1, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 547.267
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 12.844
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1178.934
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 4262.042
test = (1, 1, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8172.318

Stride 1 Kernel Version

test = (1, 0, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.692
test = (1, 4, 12345), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.834
test = (1, 16, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 81.023
test = (1, 0, 4, 4), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.631
test = (100, 0, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.491
test = (100, 8, 32, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.477
test = (50, 8, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.561
test = (50, 0, 64, 32, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 0.516
test = (16, 10, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 126.455
test = (10, 0, 675, 999, 13), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 8.238
test = (10, 0, 123, 456, 31), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1.520
test = (10, 0, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 7.854
test = (10, 4, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 306.327
test = (10, 2, 512, 512, 32), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 610.498
test = (5, 0, 128, 128, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 3.684
test = (5, 8, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 75.604
test = (5, 4, 128, 126, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 148.679
test = (1, 0, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 16.525
test = (1, 8, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 315.095
test = (1, 2, 64, 64, 16, 16, 16), delta = 0.00000, missmatches = tensor([], size=(0, 1), dtype=torch.int64) duration_ms = 1214.715
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99441
Approved by: https://github.com/ngimel
2023-05-01 22:41:00 +00:00
mingfeima
4c9d660733 fix gather issue when index is shape of n by 1 (#99709)
Fix https://github.com/pytorch/pytorch/issues/99595

When the index is shape of {N, 1}, it will also have strides of {1, 0}, which is the same as an expanded tensor (e.g. shape of {5, 5} and strides {1, 0}), leading to wrong output.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99709
Approved by: https://github.com/XiaobingSuper, https://github.com/ezyang
2023-04-24 20:55:46 +00:00
Yu Guo
3654552b8c add deterministic impl for scatter and scatter_reduction sum/mean mode (#98060)
using the existing deterministic implementation via `index_put` which has a deterministic implementation based on sorting indices.

With the `accumulate` arg in `index_put`, this can work for both scatter and scatter_reduce with sum/mean reduction mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98060
Approved by: https://github.com/mikaylagawarecki
2023-04-03 20:38:29 +00:00
mingfeima
dc6916b341 optimize gather performance for gnn usage on CPU (#87586)
On classic pyg user case for message passing, `gather` has `index` tensor in a broadcasted shape, e.g. with shape `5000, 128` and stride `[1, 0]`. That indicated gather is done on each row of the self tensor. The current implementation will try to parallel on the inner dimension which is bad performance for CPU and unable to be vectorized.

This PR addressed this use case and optimize in a similar manner to index_select, parallel on outer dimension of `index` and do vectorized copy on inner dimension.

Performance benchmarking on Xeon Icelake single socket on `GCN`: the `gather` reduced from `150.787ms` to `10.926ms`, after this optimization, `gather` will no longer be the major bottleneck for training of GNN models when `EdgeIndex` is in COO format.

for more details, please refer to https://github.com/pyg-team/pytorch_geometric/issues/4891#issuecomment-1288423705

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87586
Approved by: https://github.com/rusty1s, https://github.com/malfet
2023-01-12 00:43:43 +00:00
mingfeima
8f5f15a64b optimize scatter_add performance for gnn usage on CPU (#82703)
### Motivation of this PR

This PR is targeting at improving performance of `scatter_add` for GNN usage scenarios on PyG. Currently only CPU optimizations is covered.

`Message Passing` is the major step in GNN learning which means exchanging/aggregating info between nodes. And from the perf point of view, if the `EdgeIndex` is stored as [2, num_edges], `scatter_reduce` would be a major perf hotspot on current pytorch implementations.

To be more specific, in the process of message passing, `scatter_add` is used in a very similar way as `index_select`, except that the `self` tensor is written into while `index_select` is only reading. Therefore, the `index` tensor passed to `scatter_add` is an expanded tensor on dim0, which means all the rest of dims would end up with the same value.

### Algorithm

Current impl on scatter would do parallel on the inner dims for such case which would cause bad perf: non-contiguous memory access pattern and non-vectorized.

This PR did sorting on the `index` to solve the write conflicts if we directly parallel on dim0. The algorithm is equivalent to:
* convert memory format from `COO` to `CSR`
* do spmm reduce

### Perf improvement

The benchmark comes from https://github.com/pyg-team/pytorch_geometric/tree/master/examples, `python reddit.py` which runs model SAGE on dataset reddit.

CPU type: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz

` aten::scatter_add_` has been reduced from **37.797s** to **5.989s**:

* breakdown before
```
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                                     aten::scatter_add_        49.00%       37.797s        49.00%       37.797s      41.445ms           912
                                     aten::index_select        19.74%       15.223s        19.74%       15.227s       6.678ms          2280
                                           aten::linear         0.01%       5.706ms        15.04%       11.602s      12.721ms           912
                                            aten::addmm         6.62%        5.108s         7.92%        6.112s      13.403ms           456
                                           aten::matmul         0.00%       2.339ms         7.10%        5.475s      12.006ms           456
```

* breakdown after
```
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                                     aten::index_select        32.41%       14.677s        32.42%       14.681s       6.439ms          2280
                                           aten::linear         0.01%       6.665ms        26.43%       11.968s      13.123ms           912
                                            aten::addmm        11.76%        5.328s        13.76%        6.232s      13.667ms           456
                                     aten::scatter_add_        13.22%        5.989s        13.22%        5.989s       6.566ms           912
                                           aten::matmul         0.01%       2.303ms        12.63%        5.720s      12.543ms           456
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82703
Approved by: https://github.com/jgong5, https://github.com/ezyang
2023-01-11 05:55:09 +00:00
Kurt Mohler
5b58140d1a Add deterministic impl of scatter_add CUDA for all input sizes (#79466)
Fixes #50469

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79466
Approved by: https://github.com/ngimel
2022-09-07 03:12:49 +00:00
PyTorch MergeBot
d7847ed23e Add integer support to scatter_reduce (#80324)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80324
Approved by: https://github.com/cpuhrsch
2022-06-29 21:10:26 +00:00
yuguo68
519347df49 fix gather sparse_grad backward crash with empty index tensor
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78698

Approved by: https://github.com/ngimel
2022-06-04 02:25:05 +00:00
Mikayla Gawarecki
2a9779adbf Bugfix NAN and Inf handling for scatter_reduce (amin and amax)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75651

Approved by: https://github.com/cpuhrsch
2022-05-06 15:39:57 +00:00
PyTorch MergeBot
4aa6b6b9de Revert "Bugfix NAN and Inf handling for scatter_reduce (amin and amax)"
This reverts commit 4441582f80.

Reverted https://github.com/pytorch/pytorch/pull/75651 on behalf of https://github.com/malfet
2022-05-04 21:29:07 +00:00
Mikayla Gawarecki
4441582f80 Bugfix NAN and Inf handling for scatter_reduce (amin and amax)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75651

Approved by: https://github.com/cpuhrsch
2022-05-03 20:10:30 +00:00
Mikayla Gawarecki
e9a8e6f74a Add include_self flag to scatter_reduce
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74607

Approved by: https://github.com/cpuhrsch
2022-04-05 16:31:39 +00:00
Mikayla Gawarecki
f7829812b4 scatter_reduce CUDA support
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74606

Approved by: https://github.com/cpuhrsch
2022-04-01 15:28:06 +00:00
Mikayla Gawarecki
2bfa018462 [BC-breaking] Use ScatterGatherKernel for scatter_reduce (CPU-only) (#74226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74226

Update signature of `scatter_reduce_` to match `scatter_/scatter_add_`

`Tensor.scatter_reduce_(int64 dim, Tensor index, Tensor src, str reduce)`

- Add new reduction options in ScatterGatherKernel.cpp and update `scatter_reduce` to call into the cpu kernel for `scatter.reduce`
- `scatter_reduce` now has the same shape constraints as `scatter_` and `scatter_add_`
- Migrate `test/test_torch.py:test_scatter_reduce` to `test/test_scatter_gather_ops.py`

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D35222842

Pulled By: mikaylagawarecki

fbshipit-source-id: 84930add2ad30baf872c495251373313cb7428bd
(cherry picked from commit 1b45139482e22eb0dc8b6aec2a7b25a4b58e31df)
2022-04-01 05:57:45 +00:00
Mike Ruberry
e0d829a266 Kill the test_torch.py mixin and creates test_scatter_gather_ops (#71691)
Summary:
Per title.

Also annotates test_torch.py with additional cleanup tasks and adds empty sample inputs to elementwise unary and binary OpInfos.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71691

Reviewed By: ngimel

Differential Revision: D33735126

Pulled By: mruberry

fbshipit-source-id: 8cc097a7581a8b620540c95b2a5889c1165ecf23
(cherry picked from commit 5c6a245a3f)
2022-01-24 09:32:32 +00:00