This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
1) Add skip undefined tensor in cpu fallback when call _copy_from_and_resize;
2) Modify to_cpu function support optional tensor;
3) Add copy back to origin optional tensor when alias_info isWrite is true.
@ezyang @bdhirsh
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130237
Approved by: https://github.com/ezyang
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
Support torch.dtype as parameter in pybind11 cpp extension.
Example:
`
cpp_extension.my_ops(self, other, torch.dtype)
`
@ezyang @bdhirsh
Co-authored-by: Edward Z. Yang <ezyang@mit.edu>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126865
Approved by: https://github.com/ezyang
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
Test the generic torch.Stream/Event with fake device gurad and hooks. Since we added a fake device backend, it is mutual exclusive to other backends. Tests will be skipped if TEST_CUDA or TEST_ROCM is true.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
1) add operand and get_dim_names API;
2) set will_resize to true when output tensor is undefined;
3) add abs_stub for dummy device and calculate on cpu device;
4) support dummy device copy with stride;
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120792
Approved by: https://github.com/ezyang
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
Fixes https://github.com/pytorch/pytorch/issues/102970. See the comment [here](https://github.com/pytorch/pytorch/issues/102970#issuecomment-1577223773) for details.
We normally treat "outputs that alias inputs" specially in AOTAutograd, by replaying the views at runtime, instead of baking them into the graph. For views that are part of custom autograd functions though, we can't do that view-replay, since it will clobber the backwards function that the user specified in their custom autograd.Function.
Right now in this PR, I distinguish between "aliased inputs that are normal views" vs. "aliased inputs that are views that came from an autograd.Function call" by checking the outputs `.grad_fn` field, to see if it inherits from our custom CBackward function class. Then I added a new `OutputType` enum value, that we effectively treat the "normal" way (the same way that we treat ordinary, non-aliased outputs). The new enum val is mostly for debugging - so we can print it and know that our graph had custom autograd.Function aliased outputs in it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102992
Approved by: https://github.com/ezyang, https://github.com/zou3519
Fixes #ISSUE_NUMBER
as the title, add context support for custom device and testcase.
And in the future, we may want to refactor these hooks for different device to unify the APIs, would you agree my
idea? @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105056
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang, https://github.com/huydhn
Fixes #ISSUE_NUMBER
For the scenario where users inherit storageimpl to implement their own subclasses, the current storage creation method cannot correctly create storage objects.
Refer to the registration method of Allocator to expand the creation method of storageimpl, users can register their own custom storageimpl creation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100237
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Fixes#99326
Support storage pin_memory and is_pinned for custom device, by calling dispatched tensor operations.
@ezyang this pr is what we have discussed in issue #99326, would you please take a moment to review it, thanks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99712
Approved by: https://github.com/ezyang
Why?
* To reduce the latency of hot path in https://github.com/pytorch/pytorch/pull/97377
Concern - I had to add `set_offset` in all instances of `GeneratorImpl`. I don't know if there is a better way.
~~~~
import torch
torch.cuda.manual_seed(123)
print(torch.cuda.get_rng_state())
torch.cuda.set_rng_state_offset(40)
print(torch.cuda.get_rng_state())
tensor([123, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0], dtype=torch.uint8)
tensor([123, 0, 0, 0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0,
0, 0], dtype=torch.uint8)
~~~~
Reland of https://github.com/pytorch/pytorch/pull/98965
(cherry picked from commit 8214fe07e8)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99565
Approved by: https://github.com/anijain2305
Currently storage only considers partial backend. We want storage to create on custom backend by key PrivateUse1.
It also provides an easy automatic generation of storage-related attributes.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_storage_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.TypedStorage.is_foo`
`torch.TypedStorage.foo()`
`torch.UntypedStorage.is_foo`
`torch.UntypedStorage.foo()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98478
Approved by: https://github.com/albanD
The strategy is that we will heap allocate a LargeNegativeIntSymNodeImpl whenever we have a large negative int, so that we can keep the old `is_symbolic` test (now called `is_heap_allocated`) on SymInt. Whenever we need to do something with these ints, though, we convert them back into a plain `int64_t` (and then, e.g., wrap it in whatever user specificed SymNodeImpl they need.) We cannot wrap directly in the user specified SymNodeImpl as we generally do not know what the "tracing context" is from C++. We expect large negative ints to be rare, so we don't apply optimizations like singleton-ifying INT_MIN. Here's the order to review:
* c10/core/SymInt.h and cpp
* `is_symbolic` renamed to `is_heap_allocated` as I needed to audit all use sites: the old `is_symbolic` test would return true for large negative int, but it would be wrong to then try to dispatch on the LargeNegativeIntSymNodeImpl which supports very few operations. In this file, I had to update expect_int,
* If you pass in a large negative integer, we instead heap allocate it in `promote_to_negative`. The function is written in a funny way to keep compact constructor code for SymInt (the heap allocation happens out of line)
* clone is now moved out-of-line
* New method maybe_as_int which will give you a constant int if it is possible, either because it's stored inline or in LargeNegativeIntSymNodeImpl. This is the preferred replacement for previous use of is_symbolic() and then as_int_unchecked().
* Rename toSymNodeImpl to toSymNode, which is more correct (since it returns a SymNode)
* Complete rewrite of `normalize_symints.cpp` to use new `maybe_as_int`. Cannot easily use the old code structure, so it's now done doing a macro and typing out each case manually (it's actually not that bad.)
* Reimplementations of all the unary operators by hand to use `maybe_as_int`, relatively simple.
* c10/core/LargeNegativeIntSymNodeImpl.h - Just stores a int64_t value, but it has to be big and negative. Most methods are not implemented, since we will rewrap the large negative int in the real SymNodeImpl subclass before doing operations with it
* The rest of the files are just rewriting code to use `maybe_as_int`. There is a nontrivial comment in c10/core/SymIntArrayRef.h
Very minor test adjustment in c10/test/core/SymInt_test.cpp . Plan to exercise this properly in next PR.
Companion XLA PR: https://github.com/pytorch/xla/pull/4882
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99157
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
#97593
A new extension mechanism has been added.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.Tensor.is_foo`
`torch.Tensor.foo()`
`torch.nn.Module.foo()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98066
Approved by: https://github.com/albanD
Add a PrivateUse1 folder to contain all the feature adaptations for PrivateUse1 under Aten,For example GetGeneratorPrivate which is used for the three-party backend to register his own Generator implementation.This makes it easier for us to centrally manage these features, and it will increase the convenience of adaptation for different back-end manufacturers. For more info: https://github.com/pytorch/pytorch/issues/98073
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98127
Approved by: https://github.com/bdhirsh
Headers under torch/csrc/distributed may be referened with relative path, e.g., "<c10d/...>". However, relative path cannot be gracefully handled by Meta internal build when the NCCL PG is hipified to support AMD/RCCL because the "hipified" header files are generated in other directories. Moreover, using absolute path for header inclusion is the state-of-the-art in most components in Pytorch. Thus, this patch refactors all header paths in torch/csrc/distributed to be absolute.
See D39835774 for more details about Meta internal complication.
**How to test**: commit 9e5d199 removes -I./torch/csrc/distributed in compile options. Thus use it to verify we don't miss any relative path use of torch/csrc/distributed headers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85780
Approved by: https://github.com/kumpera, https://github.com/huydhn
Headers under torch/csrc/distributed may be referened with relative path, e.g., "<c10d/...>". However, relative path cannot be gracefully handled by Meta internal build when the NCCL PG is hipified to support AMD/RCCL because the "hipified" header files are generated in other directories. Moreover, using absolute path for header inclusion is the state-of-the-art in most components in Pytorch. Thus, this patch refactors all header paths in torch/csrc/distributed to be absolute.
See D39835774 for more details about Meta internal complication.
**How to test**: commit 9e5d199 removes -I./torch/csrc/distributed in compile options. Thus use it to verify we don't miss any relative path use of torch/csrc/distributed headers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85780
Approved by: https://github.com/kumpera
### Changes
- Move ProcessGroup::Work into its own class and update all the references to it / header includes.
#### Motivation
In the future PRs we will repurpose ProcessGroup to instead contain a list of Backends (ProcessGroupNCCL/Gloo/UCC) and perform dispatching to them based on tensor type. This change is prevent a circular dependency with ProcessGroup depending on Backend and Backend depending on ProcessGroup::Work.
Differential Revision: [D38839212](https://our.internmc.facebook.com/intern/diff/D38839212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83680
Approved by: https://github.com/kwen2501
Previously, when we SymInt-ify a schema, this is a BC-breaking change
for all people who registered functions for that function; they
must accept c10::SymInt where they previously accepted int64_t.
This is not great.
With this change, I accept old type registrations transparently. The
idea is in several parts:
- At the registration site, at compile time I have no idea whether or not
if the function being registered has a SymInt schema or not. So I
must defer the exact compatibility check. What I do instead is
check if the function pointer registered to me has SymInt in the
argument or not. If it does, I assume it is new-style and ensure
it is also registered to a special sym_ slot on KernelFunction.
If not, it only goes in the conventional slot.
- At the dispatcher site, I know at compile time whether or not this
is a SymInt function. If it is, I check for a sym_ slot on the
KernelFunction, and preferentially use that. If no such slot
exists, I then fall back to the regular slot... but I convert
all SymInt arguments to int64_t arguments (doing assertions that
no true symbolic integer was passed.) I can skip this test entirely
if the function doesn't have any SymInts in it; in that case I know
that only the original slot could have been registered. Fortunately,
both branches of the short circuit typecheck, so I didn't have to
use SFINAE or if-constexpr to make it work; just a plain if statement
that I expect the compiler to optimize away.
- Schema validation is now modestly more complicated. There are two parts. First, function schema validation proceeds by checking if the signature in question has any SymInt-like types in it or not. If it does, we do function schema validation against the real types; if it doesn't, we do validation against the fake types (but only for symint; MemoryFormat is always MemoryFormat). Second, cpp signature validation also keeps track of a "symint" cpp signature and a "non-symint" cpp signature. We only compare symint with symint, and non-symint with non-symint. I did not implement checking a conflict between a symint and non-symint cpp signature, though in principle you could try converting the SymInt types to non-SymInt types and doing the comparison that way.
To show it is working, I remove a bunch of c10::asIntArrayRefSlow shims, as the dispatcher is able to insert them automatically now.
I didn't update the Metal registrations (though they can get similar treatment) as OSS CI coverage is insufficient for this case.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39280965](https://our.internmc.facebook.com/intern/diff/D39280965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84557
Approved by: https://github.com/wconstab
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"
Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9
Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159
Also update Metal registrations for C++ registration changes.
Also update NNPI registration to account for tightened schema checking
Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Summary:
When enabled, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs
Avoid symbol clashes that can result in infinite recursion by moving all symbols in the library to its own namespace.
Add checks that should prevent calling self in recursion to `LinearAlgebraStubs.cpp`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73447
Reviewed By: albanD
Differential Revision: D34538827
Pulled By: malfet
fbshipit-source-id: f2535b471d3524768a84b2e169b6aa24c26c03bf
(cherry picked from commit 4ec24b079c861c1122f0fa86e280b977c3c2f7ac)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72306
When enable, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D33992795
Pulled By: malfet
fbshipit-source-id: d1fa351a320659b29754997c20d754e69bfe36c0
(cherry picked from commit d5d6c69a988b9454538ecd28674206da2541de17)
Summary:
Make `TORCH_CUDABLAS_CHECK` and `TORCH_CUSOLVER_CHECK` available in custom extensions by exporting the internal functions called by the both macros.
Rel: https://github.com/pytorch/pytorch/issues/67073
cc xwang233 ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67161
Reviewed By: jbschlosser
Differential Revision: D31984694
Pulled By: ngimel
fbshipit-source-id: 0035ecd1398078cf7d3abc23aaefda57aaa31106
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.
We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).
The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248
Reviewed By: astaff
Differential Revision: D30344992
Pulled By: albanD
fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61104
This patch added a new test case for findDanglingImpls. The test case introduces a C++ extension which has a dangling impl such that findDanglingImpls can find it and output its information.
Test Plan:
python test/test_dispatch.py TestDispatch.test_find_dangling_impls_ext
Imported from OSS
Reviewed By: ezyang
Differential Revision: D29512520
fbshipit-source-id: 6883fb8f065f2c0ae0e7a1adf6fd298591497e2b
Summary:
The function name and return type both are called `class_`, therefore they are ambiguous and this is UB and does not work on NVCC. See the tests for the failure case.
Thanks for the help of Thibaut Lutz from NVIDIA's compiler team.
cc: yueyericardo ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57962
Reviewed By: mruberry
Differential Revision: D28359400
Pulled By: ezyang
fbshipit-source-id: c64ec89203f99f656611aba34f7424eed7bc9e7c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53583
`Scalar` takes 32 bytes due to `c10::complex<double>`
requires aligning to 16 bytes. Passing Scalar by reference
shows about 1% improvements on instruction count.
All the changes in this commit are codemoded except for
the following 4 files (which code-gen signatures):
```
tools/codegen/api/cpp.py
tools/codegen/api/native.py
tools/codegen/api/structured.py
caffe2/contrib/aten/gen_op.py
```
# Codemode
## Main Step
For the codemod part, here is the main command used:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
```
As you can tell, it codemods both `Scalar` and `optional<Scalar>`. Apply these commands iteratively until reaching a fix-point (since one method signature might contain multiple `Scalar` parameter).
In retrospect, excluding `thrid_party` and `torch/csrc/jit` would be a good idea. (I revert it manually later, see https://github.com/pytorch/pytorch/pull/53479 as an reference).
## Pre-Step
Prior to applying the main command, as some `Scalar` are presented as `at::Scalar` or `c10::Scalar`, so I codemod some of them in advance. Here is an incomplete list:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
```
## Fixup
There are a couple of post codemod fixup. For example, `const Scalar` will be codemoded into `const const Scalar&`. `at:Scalar` will be codemoded into `at::const Scalar&` (if `Pre-step` is not done comprehensively). Here is an incomplete list:
```
fastmod --extensions cpp 'const const Scalar' 'const Scalar'
fastmod --extensions h 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod --extensions cpp 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod 'at::const Scalar&' 'const at::Scalar&'
```
## Supplementary
`cu` and `mm` files also need to be codemoded, for example:
```
fastmod --extensions cu 'at::const Scalar&' 'const at::Scalar&'
fastmod --extensions mm '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
```
Function pointers are not codemoded. Here is an incomplete list:
```
# Cover case: using index_fill_fn = void(*)(TensorIterator & iter, int64_t dim, int64_t self_dim_size, int64_t self_dim_stride, Scalar source);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
# Cover case: using softplus_fn = void (*)(TensorIterator&, Scalar, Scalar);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions cpp '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)optional<Scalar>([, \)])' '${1}const optional<Scalar>&${2}'
```
Some corner cases needs to be manually fixed.
ghstack-source-id: 123970306
Test Plan: Imported from OSS
Reviewed By: smessmer
Differential Revision: D26904445
fbshipit-source-id: 8d8a002af4b5125f153a32f03c6956be7ae5671d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53037
As remarked in #52277 it is easy to give an (inefficient, due to extra
redispatches) DefaultBackend implementation of foo and foo_ in terms of
foo_out. This patch enables code generation for DefaultBackend in these
cases by default for all structured kernels. You can see the payoff
in MSNPU extension: it only has to register a kernel for add.out, and it
gets add and add_ kernels automatically.
The actual code changes are very modest:
- When DefaultBackend, call the dispatched (not direct native::)
functions to allocate tensors, change device guard, etc
- Don't call impl() for DefaultBackend (as it doesn't exist); instead,
directly generate a call to at::foo_out to do the actual work.
- Do NOT generate DefaultBackend implementation for foo_out. Actually,
there is a case to be made for this being a good idea with more infra;
see comments inside.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D26731225
Pulled By: ezyang
fbshipit-source-id: 939da7cb69f694722ec293e5e42e74a755dd0985
Summary:
## Rationale
While most of the `torch.Generator` properties and methods are implemented as a thin wrapper of the corresponding `at::Generator` methods, `torch.Generator.get_state()` and `torch.Generator.set_state()` are implemented in legacy Torch code and are not dispatched through the `c10::GeneratorImpl` interface. This is not structured well and makes implementing generators for new backends (e.g. `XLAGeneratorImpl` for the XLA backend) inconvenient. As such, this pull request seeks to move these generator state APIs to c10 and ATen.
## What is being refactored?
* Interfaces
- Added `c10::GeneratorImpl::set_state` and `c10::GeneratorImpl::state` for getting and setting the internal state of a random number generator.
- `at::Generator::set_state` and `at::Generator::state` wraps the above-mentioned APIs, as it's basically a PIMPL.
- Added helper function `at::detail::check_rng_state` for checking the validity of new RNG state tensor.
* CPU Generator
- Renamed and moved `THTensor_(setRNGState)` and `THTensor_(getRNGState)` to `CPUGeneratorImpl::set_state` and `CPUGenerator::state`.
- Renamed and moved `THGeneratorState` and `THGeneratorStateNew` to `CPUGeneratorStateLegacy` and `CPUGeneratorState`.
* CUDA Generator
- Renamed and moved `THCRandom_setRNGState` and `THCRandom_getRNGState` to `CUDAGeneratorImpl::set_state` and `CUDAGeneratorImpl::state`.
* PyTorch Bindings
- `THPGenerator_setState` and `THPGenerator_getState` now simply forward to `at::Generator::set_state` and `at::Generator::state`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49589
Reviewed By: H-Huang
Differential Revision: D25785774
Pulled By: pbelevich
fbshipit-source-id: 8ed79209c4ffb1a0ae8b19952ac8871ac9e0255f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49220
Since all ops are c10-full, we can remove .impl_UNBOXED now.
This also removes the ability of KernelFunction or CppFunction to store unboxedOnly kernels.
ghstack-source-id: 119450489
Test Plan: waitforsandcastle
Reviewed By: ezyang
Differential Revision: D25490225
fbshipit-source-id: 32de9d591e6a842fe18abc82541580647e9cfdad
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49145
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49105
(1) Add a safety check `C10_CUDA_KERNEL_LAUNCH_CHECK()` after each kernel launch. This diff only changes the files inside the directory /fbsource/fbcode/caffe2/modules/, /fbsource/fbcode/caffe2/fb/, /fbsource/fbcode/caffe2/test/.
(2) Get rid of old check `AT_CUDA_CHECK(cudaGetLastError())` when necessary.
Test Plan:
Test build:
```
buck build mode/dev-nosan //caffe2/modules/detectron:
buck test mode/dev-nosan //caffe2/modules/detectron:
buck build mode/dev-nosan //caffe2/torch/fb/:
buck test mode/dev-nosan //caffe2/torch/fb/:
```
To check for launches without checks:
```
python3 caffe2/torch/testing/check_kernel_launches.py
```
Make sure none of the updated files are in the returned list.
Reviewed By: r-barnes
Differential Revision: D25452852
fbshipit-source-id: d6657edab612c9e0fa99b29c68460be8b1a20064