Commit Graph

137 Commits

Author SHA1 Message Date
cyy
8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00
cyy
53e356a1c0 [2/N] Enable cppcoreguidelines-special-member-functions (#138670)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138670
Approved by: https://github.com/sraikund16
2024-10-24 04:35:18 +00:00
homorunner
a040c4a260 Use std::move on stringstream to prevent unnecessary copy. (#138065)
- Takes advantage of C++20's improved handling of move semantics for std::basic_stringbuf.
- Reduces unnecessary copying and improves memory efficiency, especially for long formatted strings.

Benchmark(proof of concept): https://quick-bench.com/q/qohAu0ARH3vSDyKVsoKEfXOO6BI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138065
Approved by: https://github.com/Skylion007
2024-10-16 21:35:10 +00:00
PyTorch MergeBot
796c3c3415 Revert "Disallow FakeTensor.data_ptr access in eager mode (#137221)"
This reverts commit 7e13e7dd7e.

Reverted https://github.com/pytorch/pytorch/pull/137221 on behalf of https://github.com/jovianjaison due to failing internal tests ([comment](https://github.com/pytorch/pytorch/pull/137221#issuecomment-2397957081))
2024-10-07 21:46:13 +00:00
rzou
7e13e7dd7e Disallow FakeTensor.data_ptr access in eager mode (#137221)
Previously we raised a deprecation warning (beginning PyTorch 2.4). Now
that we are on 2.6, we're completing the deprecation and disallowing
this behavior.

Test Plan:
- tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137221
Approved by: https://github.com/albanD, https://github.com/eellison
2024-10-03 23:47:55 +00:00
Kulin Seth
144fde4fd2 [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Need to run inductor/test_cpu_select_algorithm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Co-authored-by: Roy Hvaara <roy@lightyear.no>
2024-09-05 23:23:17 +00:00
cyy
8967d55b01 [18/N] Fix clang-tidy warnings in jit (#132963)
Follows #132753

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132963
Approved by: https://github.com/Skylion007
2024-08-09 01:27:32 +00:00
PyTorch MergeBot
2764bee942 Revert "[MPS] Add support for autocast in MPS (#99272)"
This reverts commit 6919e8baab.

Reverted https://github.com/pytorch/pytorch/pull/99272 on behalf of https://github.com/clee2000 due to Broke test/inductor/test_cpu_select_algorithm.py::TestSelectAlgorithmCPU::test_quantized_linear_amx_batch_size_3_in_features_128_out_features_64_bias_False_cpu on sm86 jobs [GH job link](https://github.com/pytorch/pytorch/actions/runs/10252979157/job/28367091621) [HUD commit link](6919e8baab) Not caught on PR due to bad TD ([comment](https://github.com/pytorch/pytorch/pull/99272#issuecomment-2269808857))
2024-08-05 19:59:04 +00:00
Kulin Seth
6919e8baab [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet
2024-08-05 17:02:30 +00:00
albanD
466ea8ce54 Add fallback() to torch.library (#131707)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131707
Approved by: https://github.com/zou3519
2024-07-27 18:02:35 +00:00
cyy
a4be5cb50e Simplify some c++ code (#131612)
The simplifications were discovered by static analysis tools.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131612
Approved by: https://github.com/ezyang
2024-07-25 15:07:37 +00:00
Wang, Eikan
f52b2ee90f Modularize aten parameter parser and checker (#125308)
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.

```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```

With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`.

Differential Revision: [D59399546](https://our.internmc.facebook.com/intern/diff/D59399546)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/atalman
2024-07-11 13:17:25 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
07450e9713 Revert "[MPS] Add support for autocast in MPS (#99272)"
This reverts commit 6240cfd5c7.

Reverted https://github.com/pytorch/pytorch/pull/99272 on behalf of https://github.com/jeanschmidt due to introduced breakages in trunk ([comment](https://github.com/pytorch/pytorch/pull/99272#issuecomment-2203033719))
2024-07-02 12:29:51 +00:00
Kulin Seth
6240cfd5c7 [MPS] Add support for autocast in MPS (#99272)
Fixes https://github.com/pytorch/pytorch/issues/88415

Co-authored-by: Siddharth Kotapati <skotapati@apple.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99272
Approved by: https://github.com/malfet
2024-07-02 01:49:52 +00:00
PyTorch MergeBot
e84cf805d2 Revert "Modularize aten parameter parser and checker (#125308)"
This reverts commit 60bbdc0b40.

Reverted https://github.com/pytorch/pytorch/pull/125308 on behalf of https://github.com/fbgheith due to test failures when run by meta ([comment](https://github.com/pytorch/pytorch/pull/125308#issuecomment-2181327211))
2024-06-20 18:52:05 +00:00
Wang, Eikan
60bbdc0b40 Modularize aten parameter parser and checker (#125308)
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.

```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```

With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`, and other different types to be summarized as the following list. The list is collected from all aten operations and ordered by the number of being used.

- `Tensor`
- `bool`
- `int64_t`
- `TensorList`
- `Scalar`
- `c10::SymIntArrayRef`
- `::std::optional<Tensor>`
- `IntArrayRef`
- `double`
- `c10::SymInt`
- `::std::optional<ScalarType>`
- `::std::optional<double>`
- `::std::optional<bool>`
- `::std::optional<Layout>`
- `::std::optional<Device>`
- `::std::optional<int64_t>`
- `Dimname`
- `::std::optional<Generator>`
- `c10::string_view`
- `::std::optional<c10::string_view>`
- `OptionalIntArrayRef`
- `::std::optional<Scalar>`
- `OptionalSymIntArrayRef`
- `::std::optional<MemoryFormat>`
- `::std::optional<c10::SymInt>`
- `ScalarType`
- `ArrayRef<Scalar>`
- `DimnameList`
- `::std::optional<ArrayRef<double>>`
- `::std::array<bool,3>`
- `::std::optional<DimnameList>`
- `c10::List<::std::optional<Tensor>>`
- `::std::array<bool,2>`
- `Storage`
- `::std::array<bool,4>`
- `Device`
- `DeviceIndex`
- `ITensorListRef`
- `Stream`
- `Layout`
- `MemoryFormat`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-06-15 09:18:44 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
cyy
f8c6d43524 Concat namespaces and other fixes in torch/csrc/utils (#127833)
It contains formatting and other minor fixes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127833
Approved by: https://github.com/ezyang
2024-06-04 15:12:45 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
Wang, Eikan
978b572652 Add registration API for torch.compile-eager (#121387)
This PR is a follow-up of RFC https://github.com/pytorch/pytorch/issues/115545.

In this PR, we intend to provide a registration API dedicated to eager-through-torch.compile. The major workflow of this API will be as follows.

- Load cache
- Check cache according to the input tensors
  - Cache Hit: Run the cached kernel directly
  - Cache Miss: Run the AOTI to produce kernel and run the produced kernel. If AOTI fails to produce the kernel, invoke the python fallback function.

Currently, this PR always fallback to python kernel now and cache mechanism will be implemented in another PR - https://github.com/pytorch/pytorch/pull/116368

Differential Revision: [D57164385](https://our.internmc.facebook.com/intern/diff/D57164385)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121387
Approved by: https://github.com/desertfire, https://github.com/jansel, https://github.com/zou3519, https://github.com/jgong5
2024-05-10 00:30:27 +00:00
PyTorch MergeBot
ca0f070065 Revert "Add registration API for torch.compile-eager (#121387)"
This reverts commit 61e937f3d6.

Reverted https://github.com/pytorch/pytorch/pull/121387 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/121387#issuecomment-2087541956))
2024-04-30 22:13:04 +00:00
Wang, Eikan
61e937f3d6 Add registration API for torch.compile-eager (#121387)
This PR is a follow-up of RFC https://github.com/pytorch/pytorch/issues/115545.

In this PR, we intend to provide a registration API dedicated to eager-through-torch.compile. The major workflow of this API will be as follows.

- Load cache
- Check cache according to the input tensors
  - Cache Hit: Run the cached kernel directly
  - Cache Miss: Run the AOTI to produce kernel and run the produced kernel. If AOTI fails to produce the kernel, invoke the python fallback function.

Currently, this PR always fallback to python kernel now and cache mechanism will be implemented in another PR - https://github.com/pytorch/pytorch/pull/116368

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121387
Approved by: https://github.com/desertfire, https://github.com/jansel, https://github.com/zou3519, https://github.com/jgong5
2024-04-27 12:49:58 +00:00
ydwu4
e62169a8fa Support torchbind op dispatch in python (#123367)
We override the `__call__` method and register fake, functional, proxy default dispatch mode implementation in its python_key_mode_table.

The idea is:
1. when inputs contains FakeScriptObject,  we dispatch it through _get_dispatch mechanism. We implement dispatch mode keys automatically in the operator's constructor.
2. when inputs are not fakified, we dispatch through the original c++ dispatcher.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123367
Approved by: https://github.com/zou3519
2024-04-19 17:17:27 +00:00
rzou
889e3eeed3 Avoid cuda init to FakeTensorMode (#124413)
Also partially fixes #122109

This PR:
- We add a C++ flag (only_lift_cpu_tensors) to toggle the
  torch.tensor(1, device='cuda') ctor strategy.
  When false (default), it does the current PyTorch behavior
  of unconditionally constructing a concrete CUDA tensor then calling
  lift_fresh on it. When true, we instead construct a concrete CPU
  tensor, call lift_fresh, and then call Tensor.to(device) (under any ambient
  modes).
- FakeTensorMode flips this flag depending on if CUDA is available or
  not. We don't unconditionally set the flag to True because that is
  likely BC-breaking.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124413
Approved by: https://github.com/eellison
2024-04-19 02:39:35 +00:00
rzou
648c39c47d Add OpOverload.redispatch; use it in new custom ops API (#124089)
A kernel has "dispatcher convention" if there is an additional keyset
arg at the beginning of the argument list. This PR:
- adds a way to register kernels with dispatcher_convention using
  Library.impl (pass dispatcher_convention = True)
- adds OpOverload.redispatch

We use both of the above in the new custom ops API: we register the
autograd kernel in dispatcher convention so that we can actually call
redispatch like how pytorch built-in ops do it.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124089
Approved by: https://github.com/albanD
ghstack dependencies: #123937, #124064, #124065, #124066, #124071
2024-04-18 12:48:04 +00:00
rzou
47dbfecd37 Rename impl_abstract to register_fake, part 1/2 (#123937)
This PR:
- adds a new torch.library.register_fake and deprecates
  torch.library.impl_abstract. The motivation is that we have a lot of
  confusion around the naming so we are going to align the naming with
  the actual subsystem (FakeTensor).
- renames `m.impl_abstract_pystub("fbgemm_gpu.sparse_ops")` to
  `m.has_python_registration("fbgemm_gpu.sparse_ops")`. No deprecation
  here yet; I need to test how this works with static initialization.
- Renames a bunch of internals to match (e.g. abstractimplpystub ->
  pystub)

I'm scared to rename the Python-side internal APIs (e.g.
torch._library.abstract_impl) because of torch.package concerns. I'll do
that in its own isolated PR next just in case it causes problems.

DEPRECATION NOTE: torch.library.impl_abstract was renamed to to
torch.library.register_fake. Please use register_fake. We'll delete
impl_abstract in a future version of PyTorch.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123937
Approved by: https://github.com/albanD
2024-04-17 12:46:01 +00:00
Aaron Orenstein
2bcc83dfbd Preserve dispatch state across function tracing (#122073)
If we throw an exception in the "wrong" place we can end up with the dispatch state being in a weird state which can cause all future dispatching to fail. Preserve and restore it as part of `preserve_global_state` so we know it's sane after that.

Also fake_tensor's in_kernel_invocation_manager() was leaving a bit set in the dispatcher (DispatchKey.Dense) which affected follow-on code.  Fixed that to reset after as well.

Repro:

before:
```
$ rm test/dynamo_skips/TestSparseCPU.test_to_dense_with_gradcheck_sparse_cpu_complex64
$ PYTORCH_TEST_WITH_DYNAMO=1 pytest -s test/dynamo/test_export.py test/test_sparse.py -k 'test_to_dense_with_gradcheck_sparse_cpu_complex64'
======== 1 passed, 6173 deselected in 5.21s =============
$ PYTORCH_TEST_WITH_DYNAMO=1 pytest -s test/dynamo/test_export.py test/test_sparse.py -k 'test_torch_inference_mode_ctx or test_to_dense_with_gradcheck_sparse_cpu_complex64'
========= 1 skipped, 6172 deselected, 1 error in 5.29s =========
```
(note that test_to_dense_with_gradcheck_sparse_cpu_complex64 passes on its own but failed when including the skipped test_export.py tests)
after:
```
$ rm test/dynamo_skips/TestSparseCPU.test_to_dense_with_gradcheck_sparse_cpu_complex64
$ PYTORCH_TEST_WITH_DYNAMO=1 pytest -s test/dynamo/test_export.py test/test_sparse.py -k 'test_to_dense_with_gradcheck_sparse_cpu_complex64'
===================== 1 passed, 6173 deselected in 5.42s =====================
$ PYTORCH_TEST_WITH_DYNAMO=1 pytest -s test/dynamo/test_export.py test/test_sparse.py -k 'test_torch_inference_mode_ctx or test_to_dense_with_gradcheck_sparse_cpu_complex64'
===================== 1 passed, 1 skipped, 6172 deselected in 7.30s ======================
```
(note that test_to_dense_with_gradcheck_sparse_cpu_complex64 passes in both runs)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122073
Approved by: https://github.com/zou3519
2024-04-10 18:57:01 +00:00
rzou
81e7a7c955 Add mutated_args field to custom_op (#123129)
If provided, we:
- autogenerate an ADInplaceOrView implementation
- assume that no mutated inputs are returned as outputs. There are
  already aliasing runtime checks that check this.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123129
Approved by: https://github.com/albanD
ghstack dependencies: #123108, #123109, #123110
2024-04-05 22:03:51 +00:00
rzou
d486cb7c1b Deprecate calling FakeTensor.data_ptr in eager-mode (#123292)
Today, we error out on FakeTensor.data_ptr under torch.compile. This PR
moves to error out on FakeTensor.data_ptr under eager mode to avoid
diverging behavior.

We do this by adding another bit onto FakeTensor that we'll remove after
the deprecation cycle.

Test Plan:
- tested locally
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123292
Approved by: https://github.com/eellison
ghstack dependencies: #123261, #123282, #123291
2024-04-04 20:35:24 +00:00
rzou
c81c9ba472 Disallow {FakeTensor,FunctionalTensor}.data_ptr (#122514)
This PR:
- disallows FakeTensor.data_ptr when it is called inside PT2 or fx tracing.
- disallows FunctionalTensor.data_ptr (python FunctionalTensor is only used in
  PT2)

The motivation behind this is that the leading cause of segfaults when
using custom ops with PT2 is calling .data_ptr on FunctionalTensor or
FakeTensor.

This change is BC-breaking. If your code broke as a result of this, it's
because there was a bug in it (these .data_ptr should never be
accessed!). You can either fix the bug (recommended) or get the previous
behavior back with:
```
from torch._subclasses.fake_tensor import FakeTensor
from torch._subclasses.functional_tensor import FunctionalTensor

data_ptr = 0 if isinstance(tensor, (FakeTensor, FunctionalTensor)) else tensor.data_ptr()
```

Test Plan:
- existing tests

Differential Revision: [D55366199](https://our.internmc.facebook.com/intern/diff/D55366199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122514
Approved by: https://github.com/ezyang, https://github.com/albanD, https://github.com/yifuwang, https://github.com/kurtamohler
2024-03-26 23:55:42 +00:00
rzou
3ef0befdc9 Better error messages for impl_abstract_pystub (#120959)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120959
Approved by: https://github.com/drisspg
2024-03-04 15:24:36 +00:00
soulitzer
312ce35c1f Rename singleton int to nested int (#119661)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119661
Approved by: https://github.com/ezyang
2024-02-16 19:21:17 +00:00
rzou
b256b7b348 Add way to actually delete a torch.library.Library object (#118318)
Relying on object lifetimes in Python is a bad idea due to reference
cycles. Previously, when a torch.library.Library object gets destroyed,
it clears all the registrations associated with it, but it's unclear
when it actually gets destroyed due to the existence of refcycles.

This PR:
- adds torch::Library::clear(), which deterministically releases all of
  the RAII registration handles of the torch::Library object
- adds a new `torch.library._scoped_library` context manager, which creates
  a library and cleans it up at the end of the scope using the previous item.
  All tests (unless they already handle library lifetimes) should use
  this new API
- Rewrites some flaky tests to use `_scoped_library`.

In the future we'll probably migrate all of our torch.library tests to
use `_scoped_library`, but that's kind of annoying because we have
multiple thousands of LOC

I'm hoping this will deflake those tests; we'll see.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118318
Approved by: https://github.com/albanD
2024-01-26 22:30:51 +00:00
Edward Z. Yang
d78776e2e6 Stop unconditionally applying hermetic mode (#116996)
When originally authored, it was not necessary to unconditionally apply
hermetic mode, but I chose to apply it in eager mode to help catch bugs.
Well, multipy is kind of dead, and hermetic mode is causing real
implementation problems for people who want to do fancy Python stuff
from the dispatcher.  So let's yank this mode for now.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116996
Approved by: https://github.com/jansel
2024-01-09 05:55:08 +00:00
Aaron Gokaslan
cc2c2c6ca9 [Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)
Adds a clang-tidy check to flag duplicate include files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116193
Approved by: https://github.com/albanD, https://github.com/malfet
2023-12-21 14:58:12 +00:00
PyTorch MergeBot
f71d302c63 Revert "[Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)"
This reverts commit 71cb13869b.

Reverted https://github.com/pytorch/pytorch/pull/116193 on behalf of https://github.com/jeanschmidt due to Breaking internal test (bolt_nn_espresso_operator_test_eureka-scheduler) and job (build-rdk-diff-windows-debug-cuda11) @malfet and @albanD, please help the author get this PR merged by providing more information ([comment](https://github.com/pytorch/pytorch/pull/116193#issuecomment-1866391726))
2023-12-21 14:43:07 +00:00
Aaron Gokaslan
71cb13869b [Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)
Adds a clang-tidy check to flag duplicate include files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116193
Approved by: https://github.com/albanD, https://github.com/malfet
2023-12-20 17:56:21 +00:00
soulitzer
4d8ad4fb82 Move SingletonSymNodeImpl from c10 to aten (#114895)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114895
Approved by: https://github.com/jbschlosser
2023-12-13 20:01:18 +00:00
Antonio Kim
73c0035160 Add reset_storage method to FunctionalTensorWrapper (#115235)
In certain edge cases when using lazy tensors, the base tensor stored in the `FunctionalStorageImpl` and the `value_` tensor stored in the `FunctionalTensorWrapper` diverge. For instance, take this simple example
```python
class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(4, 2, bias=False)

    def forward(self, x):
        return x @ self.fc1.weight.transpose(0, 1)

with torch.device("lazy"):
    model = Model()

    x = torch.ones(4)
    out = model(x)
```
The call to `transpose` on the lazily initialized weight `fc1.weight` applies a view op on the functional tensor which only gets propagated to the functional tensor wrapper and not the base tensor in the storage. Thus, causing them to diverge.

To fix this behaviour, we need to reset the functional tensor's storage. To facilitate this, we add a `reset_storage` method to `FunctionalTensorWrapper` which clears away the old storage and view metas.

CC: @behzad-a @GlebKazantaev @wconstab @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115235
Approved by: https://github.com/bdhirsh
2023-12-07 01:32:01 +00:00
Richard Zou
d1c092ae1b Update impl_abstract_pystub to be less boilerplatey (#113182)
Summary:

We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
  Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
  the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
  Library.define in Python appends the op to a global set, which is analogous
  to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
  we require that it has an `impl_abstract_pystub` specified and we also check
  that the module in the `impl_abstract_pystub` is the same as the module where
  the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
  buck-based systems) because buck sits above us.

bypass-github-export-checks

Test Plan: - existing tests

Differential Revision: D51080493

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113182
Approved by: https://github.com/ezyang
2023-11-08 00:39:00 +00:00
PyTorch MergeBot
bc3e2e03cd Revert "Update impl_abstract_pystub to be less boilerplatey (#112851)"
This reverts commit 6ae4e3a8d2.

Reverted https://github.com/pytorch/pytorch/pull/112851 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/112851#issuecomment-1799539354))
2023-11-07 18:53:13 +00:00
Richard Zou
6ae4e3a8d2 Update impl_abstract_pystub to be less boilerplatey (#112851)
Summary:
We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
  Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
  the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
  Library.define in Python appends the op to a global set, which is analogous
  to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
  we require that it has an `impl_abstract_pystub` specified and we also check
  that the module in the `impl_abstract_pystub` is the same as the module where
  the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
  buck-based systems) because buck sits above us.

Test Plan: - existing tests

Differential Revision: D50972148

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112851
Approved by: https://github.com/ezyang
2023-11-07 16:07:42 +00:00
Edward Z. Yang
a1ab22b81d Reland "Trigger specialization when you call size()/stride() from C++ (#111935)" (#112605)
This reverts commit 22221c6d60.

Differential Revision: [D50886564](https://our.internmc.facebook.com/intern/diff/D50886564)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112605
Approved by: https://github.com/voznesenskym
2023-11-02 13:27:31 +00:00
PyTorch MergeBot
22221c6d60 Revert "Trigger specialization when you call size()/stride() from C++ (#111935)"
This reverts commit 5846705e36.

Reverted https://github.com/pytorch/pytorch/pull/111935 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/111935#issuecomment-1782107024))
2023-10-27 00:23:03 +00:00
rzou
2d04be9a00 [torch.library] Add mechanism to add tags during define (#111912)
We extend torch.library.Library.define and torch.library.define
with a tags argument.

Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111912
Approved by: https://github.com/ezyang
2023-10-25 21:20:48 +00:00
Edward Z. Yang
5846705e36 Trigger specialization when you call size()/stride() from C++ (#111935)
This should be the last of the "it used to work with static shapes but
it doesn't work with dynamic shapes" hard errors.  Now we will just
specialize if you hit it from C++.

The strategy here is a bit clever.  We shunt the size() call to Python
binding if an error would have occurred.  Importantly, we already have
logic to make sure the newly allocated ints stay live for the duration
of the ArrayRef access.

storage_offset is intentionally omitted because there are some problems
with it.  I will fix them next.

This should let us get rid of the aotautograd_static test configuration.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111935
Approved by: https://github.com/zou3519
2023-10-25 16:17:55 +00:00
Richard Zou
66b74d231a Change torch.library.impl to accept a device string (#111659)
torch.library.impl now accepts a device string (e.g. "cpu", "cuda"). It
still accepts DispatchKey strings, but we no longer document this, because
using arbitrary DispatchKeys is more for the power users.

We map the device string to a DispatchKey and then register the impl for
said DispatchKey. A user may also specify multiple device strings at once
or specify "types=default" to get a CompositeExplicitAutograd registration.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111659
Approved by: https://github.com/soulitzer
ghstack dependencies: #111380
2023-10-23 23:02:41 +00:00
soulitzer
fda0a965c7 [reland] Support SingletonSymNode mul with coefficient (#110673)
reland of https://github.com/pytorch/pytorch/pull/110369
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110673
Approved by: https://github.com/ezyang
2023-10-10 19:37:17 +00:00