As we live in C++17 world
This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
Applies various automated fixes that reduces the number of spurious copies in torch, aten, and c10. I also inlined any default dtors that would have made the type trivially destructible.
Follow up to #89000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90629
Approved by: https://github.com/ezyang
## Motivation
Currently, only `aten::conv2d` has been supported in NNC. When using `torch.jit.trace`, the node on the graph will be `aten::_convolution`. This PR adds support of `aten::_convolution` node when it corresponds to a 2D convolution.
## Pitch
Support `aten::_convolution` in NNC when we can infer from the parameters that it is a 2D convolution to support models obtained from `torch.jit.trace`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84038
Approved by: https://github.com/huiguoo
Decide the memory layout propagation policy and propagate it within the NNC fusion group. The memory layout propagation policy could be `Contiguous` and `Channels-last contiguous`.
- `Contiguous`: Convert the non-contiguous including channels-last contiguous input tensors to contiguous and generate the contiguous output `Buf` for lowering function.
- `Channels-last contiguous`: Convert the input tensors to channels-last contiguous and generate the channels-last contiguous output `Buf` for lowering function.
Currently, the rule is simple. If all the input and out tensors of the NNC fusion group are channels-last contiguous, then the propagated memory layout is `Channels-last contiguous`. Otherwise, it is always `Contiguous` which is as same as current situation. It means that this PR provides a fast path to channels-last and the optimization is conservative since its trigger conditions are strict.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76948
Approved by: https://github.com/ZolotukhinM
Summary:
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.
Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.
Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538
Reviewed By: anjali411
Differential Revision: D35747333
Pulled By: malfet
fbshipit-source-id: 3fc5828e44a4c05ba0e89e92613e6ebbdb260626
(cherry picked from commit c179fba21cfa2a0093fad50ccad5a22dd7cff52c)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73028
A typical use case for `TensorExprKernel` is to create the kernel once and call it multiple times, possibly in parallel. For the parallel calls to work, we need to ensure that the run() method calls do not change any state in `TensorExprKernel`.
Before this change, the `run()` method was modifying the sizes and strides vectors when dynamic shapes were present. This manifested as a data race when running a model with Static Runtime.
ghstack-source-id: 149398820
Test Plan:
```
buck build mode/dev-asan //caffe2/test/cpp/tensorexpr:tensorexpr
./buck-out/dev/gen/caffe2/test/cpp/tensorexpr/tensorexpr --gtest_filter="DynamicShapes.MultiThreadedExecution"
```
Reviewed By: eellison
Differential Revision: D34287960
fbshipit-source-id: d311f3c5a66c5d5de4e1deaeaa01816b53e9906e
(cherry picked from commit 161568bfae)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72390
This class didn't add much value and only caused more boilerplate code.
This change removes the class and updates all the use cases with
uses of `ExprHandle`.
A side effect of this change is different names in loop variables, which
caused massive mechanical changes in our tests.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D34030296
Pulled By: ZolotukhinM
fbshipit-source-id: 2ba4e313506a43ab129a10d99e72b638b7d40108
(cherry picked from commit c2ec46a058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72266
Within the kernel, we may manipulate `Value *` in `OptimizeCat`, which would invalidate the input `Value *` -> Stride mapping.
Fix for https://github.com/pytorch/pytorch/issues/72173
Test Plan: Imported from OSS
Reviewed By: dagitses, davidberard98
Differential Revision: D33986306
Pulled By: eellison
fbshipit-source-id: dc33cd2b545e49e90d1e46b9fcf1e6dbb4b829db
(cherry picked from commit 5e4555968a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72032
This contains a few channels last changes from benchmarking:
- dont permute back to channels last on dynamic, cpu, perf is not good, and use cases for it are exotic atm
- remove the conditional one handling in permutting channels last symbolic tensor on cuda, it's not needed in the permutation case as tests show
- removing logic in torch/csrc/jit/tensorexpr/loopnest.cpp preventing inlining. the condition in checks is always valid given valid construction of ir
I can split up as needed.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D33864652
Pulled By: eellison
fbshipit-source-id: f16674fb02dfff22670d8a2f856c5a317fd15717
(cherry picked from commit a9a0697839)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71186
So far we've only supported scalar inputs, but couldn't handle scalar outputs
or intermediates. This PR adds it.
Scalar outputs are returned as 0-dim tensors. If the kernel is invoked on a
stack of IValues, we correctly convert the results to scalar IValues when
needed. If the kernel is invoked with a vector of void* pointers, everything
works out of the box without any conversions.
Lowerings for scalar operators are a bit tricky. Usual lowerings return a pair
<Buf, Stmt> (aka Tensor), but for scalar operators we also want to have the
corresponding Var that the lowering function supposedly creates (in theory we
could just use Loads and Stores, but I'm worried it can affect performance as
there is no guarantee this will be optimized by LLVM). So, what we do here to
work around this is we return a fake buf + stmt that sets the corresponding
var. Then outside of the lowering we create a real buffer and generate a Store
to it with the value from the variable we passed as the base handle of the fake
buf. This real buffer is then treated as usual by the rest of the system and we
can use it if we need to return this scalar value as a kernel output. If we do
not need to return it, then the Store will be deleted by the DCE pass.
Differential Revision:
D33539324
D33539324
Test Plan: Imported from OSS
Reviewed By: navahgar
Pulled By: ZolotukhinM
fbshipit-source-id: ab4524b9820ce204f106effcf6232ed33d4ee223
(cherry picked from commit 7faa0939f0)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70464
Add handling of strided input tensors to dynamic fusion. This is done with the same set of input striding specializations as https://github.com/pytorch/pytorch/pull/60684/:
```
S_ONE, // STRIDE_ONE: packed
S_CONT, // STRIDE_CONTIGUOUS: stride[i + 1] * sizes[i + 1]
S_TRAN_CONT, // STRIDE_TRANSPOSED_CONTIGUOUS: stride[i-1] * sizes[i-1]
S_AS_ARG, // STRIDE_AS_ARG: stride passed in as runtime value
```
and then two additional specializations for a) contiguous tensor and b) channels-last tensor. channels-last is a common case and we should optimize for it. additionally, tensors natively store whether they are contiguous/channels-last contiguous, which makes it faster to check if tensors follow this pattern.
Output striding will be done in a follow up.
The striding is stored on both the TensorGroup node and on the guard node. The striding descriptors are stored as a vector of strings on the node for debugability and to make use of storing ivalues as attributes on nodes.
As an example:
```
%8 : Double(10, 11, 12, 13, strides=[1716, 1, 143, 11], requires_grad=0, device=cpu) = prim::TensorExprGroup_0[symbolic_shape_inputs=[-37, -36, -35, -34], striding_inputs_desc=[["TENSOR_CONT_CHANNELS_LAST"]](%x, %24, %23, %22, %21)```
```
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D33458649
Pulled By: eellison
fbshipit-source-id: c42616d3c683d70f6258180d23d3841a31a6030d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70535
This also fixes handling of inputs that happen to be outputs (they
require copy).
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D33399116
Pulled By: ZolotukhinM
fbshipit-source-id: 9845838eb653b82ae47b527631b51893990d5319
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70410
Trying again after #70174 was reverted. Earlier the env
variable was read into a static var in C++ causing state to be retained
and causing test failures. Static type is removed in this PR.
Test Plan: Imported from OSS
Reviewed By: ZolotukhinM
Differential Revision: D33321435
fbshipit-source-id: 6d108eb00cac9150a142ccc3c9a65a1867dd7de4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69477
This diff adds a new run method to `TensorExprKernel` which takes in
output tensors as inputs and stores the output in those given tensors.
ghstack-source-id: 146107009
Test Plan: buck test mode/dev-nosan //caffe2/test/cpp/tensorexpr:tensorexpr -- --exact 'caffe2/test/cpp/tensorexpr:tensorexpr - Kernel.RunWithAllocatedOutputs'
Reviewed By: ZolotukhinM
Differential Revision: D32823890
fbshipit-source-id: edc1f4839785124048b034060feb71cb8c1be34f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67861
Previously submitted as https://github.com/pytorch/pytorch/pull/67197.
This got reverted because its failures were hidden by the failures of
another PR.
Test Plan: Imported from OSS
Reviewed By: ZolotukhinM
Differential Revision: D32178196
Pulled By: navahgar
fbshipit-source-id: cc8a5c68aed360d06289e69645461cfa773e1300
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67229
Right now, assembly code generated for the a given method from the model is named wrapper or func by default. The function name is then replaced with a proper kernel_func_name after target specific assembly is generated.
This PR propagates a desired kernel_func_name right from aotCompiler API so that the generated function has the needed name that doesn't need to be replaced later.
Note: Most of this change was landed in https://github.com/pytorch/pytorch/pull/66337 which had to be reverted as it was breaking `test_profiler` in `test_jit_fuser_te` as it replaced the name generated for graph with the default kernel_func_name value. This PR fixes that as well.
```
(pytorch) ~/local/pytorch kname
└─ $ python3 test/test_jit_fuser_te.py
CUDA not available, skipping tests
monkeytype is not installed. Skipping tests for Profile-Directed Typing
........................................<string>:3: UserWarning: torch.cholesky is deprecated in favor of torch.linalg.cholesky and will be removed in a future PyTorch release.
L = torch.cholesky(A)
should be replaced with
L = torch.linalg.cholesky(A)
and
.
.
.
......................<string>:3: UserWarning: torch.symeig is deprecated in favor of torch.linalg.eigh and will be removed in a future PyTorch release.
The default behavior has changed from using the upper triangular portion of the matrix by default to using the lower triangular portion.
L, _ = torch.symeig(A, upper=upper)
should be replaced with
L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L')
and
L, V = torch.symeig(A, eigenvectors=True)
should be replaced with
L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L') (Triggered internally at ../aten/src/ATen/native/BatchLinearAlgebra.cpp:2492.)
......[W pybind_utils.cpp:35] Warning: Using sparse tensors in TorchScript is experimental. Many optimization pathways have not been thoroughly tested with sparse tensors. Please include the fact that the network is running sparse tensors in any bug reports submitted. (function operator())
/data/users/priyaramani/pytorch/torch/testing/_internal/common_utils.py:403: UserWarning: Using sparse tensors in TorchScript is experimental. Many optimization pathways have not been thoroughly tested with sparse tensors. Please include the fact that the network is running sparse tensors in any bug reports submitted. (Triggered internally at ../torch/csrc/jit/python/pybind_utils.h:691.)
return callable(*args, **kwargs)
.....................................................................[W Resize.cpp:23] Warning: An output with one or more elements was resized since it had shape [1], which does not match the required output shape [].This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (function resize_output_check)
[W Resize.cpp:23] Warning: An output with one or more elements was resized since it had shape [1, 5], which does not match the required output shape [5].This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (function resize_output_check)
........................................................................s.......s...s.s....s......s..sss............................
----------------------------------------------------------------------
Ran 503 tests in 37.536s
OK (skipped=10)
```
Test Plan: Imported from OSS
Reviewed By: navahgar, pbelevich
Differential Revision: D31945713
Pulled By: priyaramani
fbshipit-source-id: f2246946f0fd51afba5cb6186d9743051e3b096b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66337
Right now, assembly code generated for the a given method from the model is named wrapper or func by default. The function name is then replaced with a proper kernel_func_name after target specific assembly is generated.
This PR propagates a desired kernel_func_name right from aotCompiler API so that the generated function has the needed name that doesn't need to be replaced later.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D31514095
Pulled By: priyaramani
fbshipit-source-id: b70c8e2c733600a435cd4e8b32092d37b7bf7de5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65554
We're relying on JIT based shape inference and not using the TE
implementation.
Question to the audience: we set `hasBroadcasts_` in that function, but
this function was almost never invoked. Do we behave correctly in the
presence of rand-calls and broadcasts?
Test Plan: Imported from OSS
Reviewed By: bertmaher
Differential Revision: D31148925
Pulled By: ZolotukhinM
fbshipit-source-id: 2898a57e389ea0950163122089d0fec3d92701c4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345
FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165
Test Plan:
CI
perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.
Reviewed By: hlu1
Differential Revision: D31027361
fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65552
This PR is mostly a verbatim move of several functions to different
files. The goal is to have more consistency in what resides where.
With this PR:
* All `compute*` functions defining how a given operator needs to be
lowered to TE IR will reside in `operators/*.{cpp,h}`.
* Auxiliary functions for these functions will reside in
`operators/misc.cpp`. `compute*` functions for ops not belonging
anywhere else can also go to that file.
* `operators/unary.*` is renamed to `operators/pointwise.*` and now
includes functions like `computeTwoOperands`.
* `kernel.*` now contains *only JIT-related* logic and implementations of
`TensorExprKernel` methods.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D31148923
Pulled By: ZolotukhinM
fbshipit-source-id: e36ad8e779b8d30a33b49ea4ebf6d6a7438989f4