Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.
After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.
**Note that this PR is BC-breaking in the following use cases:**
**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.
**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
# Change gradient to a sparse tensor
params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))
grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad) # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072
Differential Revision: D14075257
Pulled By: yf225
fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20108
Add cpp runs for c2, hooked up via pybinds. Print output to terminal. This is not hooked up with the pep output yet because I'd like to verify the numbers first.
Note that this isn't quite the same mechanism as the pytorch cpp hookup, which uses cpp_python_extensions. If I can use the same mechanism to pull all the inputs for c2 through cpp and do FeedBlobs in cpp, then I'll switch to that.
Reviewed By: zheng-xq
Differential Revision: D15155976
fbshipit-source-id: 708079dacd3e19aacfe43d70c5e5bc54da2cf9e3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19442
For cases like CV, some of ops like transpose and tile will mangle the batch size so that we don't know how to adjust output batch size. In this case, the current solution is just fix the input batch statically and do not adjust output batch size.
Reviewed By: zrphercule
Differential Revision: D15007237
fbshipit-source-id: a21b943a52ee5462d9d7804dfae44360f579f8cf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18716
Might be useful as an intermediate stage for some systems that currently use Caffe2 nets as an execution mechanism.
Not sure it's a good idea all together, please comment.
Limitations:
- only Tensor types as inputs/outputs
- the entire module is serialized as a zip archive inside a proto in Caffe2 db, it'd be subject to 4Gb limit and is likely very slow. For small models it'd work though.
- no autograd, though it can be attached in principle
- no way to retrieve parameters inside the script module from C2 runtime perspective (though they potentially can be alias-fetched and stored as individual blobs)
- after deserialization, python wrappers returned don't have correct type (as we don't do module_lookup trick)
Build-wise, I had to add dependency from pybind_state to libtorch.so. I don't think we build Caffe2 python frontend independently anymore, so it should be fine.
Reviewed By: amirshim, houseroad
Differential Revision: D14339599
fbshipit-source-id: 88a37a8abd1f1c4703e5ef937031f222535d4080
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18740
Test utilities for writing Caffe2/PyTorch performance microbenchmarks. Brief description of the file structure
* benchmark_core.py : core utiltiites for running microbenchmark tests
* benchmark_caffe2.py : Caffe2 specific benchmark utilitites
* benchmark_pytorch.py: PyTorch specific benchmark utilities
* benchmark_runner.py : Main function. Currently it can run the microbenchmark tests in a stand-alone mode. The next step is to have this integrate with AI-PEP.
The utilities are located at https://github.com/pytorch/pytorch/tree/master/test to have access to both Caffe2/PyTorch Python's frontend.
Include two operator microbenchmarks; support both Caffe2/PyTorch:
* MatMul
* Add
Reference: PyTorch benchmarks : https://github.com/pytorch/benchmark/tree/master/timing/python. In this work, we start with two example binary operators MatMul and Add, but eventually we should to cover unary operators like in the PyTorch benchmark repo.
Reviewed By: zheng-xq
Differential Revision: D13887111
fbshipit-source-id: b7a56b95448c9ec3e674b0de0ffb96af4439bfce
Summary:
For MKL-DNN,the filter data will be reorderd to primitive format, it takes a lot of time.
So the patch provide a method to convert filter format before training.
And "OptimizeForIdeep" will be changed to "OptimizeForMkldnn" in this patch.
This patch depends on https://github.com/pytorch/pytorch/pull/12866
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15171
Differential Revision: D14590741
Pulled By: yinghai
fbshipit-source-id: 07971c9977edac3c8eec08ca2c39cda639683492
Summary:
Because of two separate python extensions with different pybind
instances I have to go through void* conversion. Since it's hidden from
user, it's fine.
New APIs added on C2 side:
- workspace.FetchTorch('blob')
- workspace.Workspace.current.blobs['blob'].to_torch()
- workspace.FeedBlob('blob', pytorch_tensor)
Works on CPU an GPU.
The only glitches are with resizing because of variable/tensor split.
But data sharing works properly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17190
Reviewed By: ezyang
Differential Revision: D14163882
Pulled By: dzhulgakov
fbshipit-source-id: d18e5b8fcae026f393c842a1149e972515732de2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17158
Because of Reshape op, batch size can be changed. This diff addresses first order issue raised from multiple batch size system. We need to export different real_batch_size for different max_batch_size input and attach it to the right output.
It also fixes a false exception.
Reviewed By: ipiszy
Differential Revision: D14099541
fbshipit-source-id: 0fa9e86826f417a11d2b5dd2ee60dff64a7ce8c4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17074
There are some common functionalities in backend lowering. This diff creates a base class which hosts these common stuff.
Reviewed By: ipiszy
Differential Revision: D14073192
fbshipit-source-id: 9617603d0e73db6f7fcc5572756b9dbab506dae5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17046
As we are moving to use bound shape inference, we can remove the awkward fake inference run path and make the code cleaner.
Reviewed By: ipiszy
Differential Revision: D14061501
fbshipit-source-id: b3ace98b3dabef3c3359086a0bb1410518cefa26
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16932
During onnxifi transformation net ssa is rewritten. At the last step the weight
names are changed back to what they were before. The diff keeps the weight
names unchanged thru the process.
Reviewed By: yinghai
Differential Revision: D13972597
fbshipit-source-id: 7c29857f788a674edf625c073b345f2b44267b33
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15453
Just move things around to facilitate further development. No logic change.
Reviewed By: rdzhabarov
Differential Revision: D13533959
fbshipit-source-id: eebab1306939e802aacffb24a711d372fd67916c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14196
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: dzhulgakov
Differential Revision: D13091163
fbshipit-source-id: 9abf2fd320baca76e050530c500dd29f8e2d0211
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: ezyang
Differential Revision: D12873145
fbshipit-source-id: 653735c20d611ff6ac9e380d8b3c721cb396a28f
Summary: Made the clangr rule more robust and it discovered more callsites.
Reviewed By: smessmer
Differential Revision: D12825017
fbshipit-source-id: 3be1eeb7ea697b36ef89e78ba64c0ee1259439c4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12848
Updated all non-test uses of protobuf::MessageLite::SerializeAsString to call
SerializeAsString_EnforceCheck so that the return value is checked and can
throw an exception if failing.
Most of the affected code was called from classes derived from BlobSerializeBase.
Didn't touch most tests and ENFORCE calls because they usually do checks
anyway.
Original commit changeset: c0760e73ecc7
Reviewed By: dzhulgakov
Differential Revision: D10453456
fbshipit-source-id: d2f2b7b4578e721924354149f08f627c7e3bf070
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12900
Workspace sometimes will be populated with input tensors for shape inference but net.external_input() is not a reliable way to tell weights from input in the workspace. We say in some usecases where net.external_input() is empty. In this case, we need to give user an option to provide input hint.
Reviewed By: bddppq
Differential Revision: D10476822
fbshipit-source-id: 1a3fa2df69b959d5b952a7824eba9e6c713f4f07
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12799
Updated all non-test uses of protobuf::MessageLite::SerializeAsString to call
SerializeAsString_EnforceCheck so that the return value is checked and can
throw an exception if failing.
Most of the affected code was called from classes derived from BlobSerializeBase.
Didn't touch most tests and ENFORCE calls because they usually do checks
anyway.
Reviewed By: ezyang
Differential Revision: D10416438
fbshipit-source-id: cb842e3e26b0918829d71267a375d4dd40600d58
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12685
In this diff, we push the fake run of the net into the ONNXIFI transformer, because
1. We cannot do shape inference for every op
2. Since the net has been SSA rewritten, we cannot use shape info from outer workspace directly.
In addition, this diff adds input shape info when querying the `onnxBackendCompatibility` function.
Reviewed By: bddppq
Differential Revision: D10390164
fbshipit-source-id: 80475444da2170c814678ed0ed3298e28a1fba92
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12180
I had to fix a lot of call sites, because a lot of places assume that
you can actually get a const vector&, and if the internal representation
of sizes in a tensor is NOT a vector, it's not possible to fulfill
this API contract.
Framework changes:
- I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to
sizes() now.
- De-templatized SetDims; now it is an explicit list of ArrayRef and
variadic overloads. This makes implicit conversions work again,
so I don't need to explicitly list the std::vector cases too.
- As a knock-on effect, this causes Reset() to accept at::IntList as well as
const std::vector<int64_t>&
- Edited variadic overloads of SetDims to all forward to the underlying
arbitrary-dim implementation, reducing code duplication. (It's probably
marginally less efficient in the new world.)
- Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList
- Make MKLTensor accept ArrayRef along with vector in constructor and
Reset (unfortunately, no implicit conversions here, since it's templated on
index type.)
- There are a few other places, like cudnn, where I changed functions
that previously took const std::vector<int64_t>& to take at::IntList
instead.
Classification of call site changes:
- 'const std::vector<int64_t>& x_dims = x.dims()' ==>
'at::IntList x_dims = x.dims()'
- 'std::vector<int64_t> x_dims = x.dims()' ==>
'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!)
Usually this is because we're about to mutably modify the vector
to compute some new dimension. However, it also very commonly occurs in the
form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators.
- Instead of constructing std::vector<int64_t>{blah, blah}, construct an
at::IntList directly
ArrayRef changes:
- cbegin()/cend() iterators, they operate the same aas begin()/end() because
everything on ArrayRef is const.
- Moved operator<< into ArrayRef.h, so that it's always available when
working with ArrayRef. I also templated it, so it now works on an
ArrayRef of any type.
- Add operator== overload for ArrayRef, and also add variants to permit
comparison of ArrayRef with std::vector, a very common operation.
(The non-templated version of operator== can get these automatically
via implicit conversion, but with templates C++ refuses to do
any explicit conversions.)
I'm planning to audit all dims() call sites to make sure they don't
expect 'auto x = t.dims()' to give you an x whose lifetime can validly
outlive the tensor.
I opted not to do a dims() to sizes() rename, because dims() also matches
the protobufs accessor. Bad news!
Reviewed By: jerryzh168
Differential Revision: D10111759
fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
Summary:
All usages of the `ndarray` construct have now been guarded with `USE_NUMPY`. This eliminates the requirement of NumPy while building PyTorch from source.
Fixes#11757
Reviewed By: Yangqing
Differential Revision: D10031862
Pulled By: SsnL
fbshipit-source-id: 32d84fd770a7714d544e2ca1895a3d7c75b3d712
Summary:
This does 6 things:
- add c10/util/Registry.h as the unified registry util
- cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10
Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077
Reviewed By: ezyang
Differential Revision: D10050771
Pulled By: Yangqing
fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043
Re-trying D9979976, this time with all call sites fixed.
D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.
Reviewed By: ezyang
Differential Revision: D10026392
fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223
Differential Revision:
D10026321
Ninja: stable broken
fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923
This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.
This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.
Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "
It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.
Reviewed By: ezyang
Differential Revision: D9979976
fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11817
Blob::Serialize() and Blob::Deserialize() are now free functions SerializeBlob(), DeserializeBlob() instead.
This takes away access to Blob internals from them and makes future refactorings easier.
Reviewed By: ezyang
Differential Revision: D9882726
fbshipit-source-id: 3251ebd4b53fc12f5e6924a6e4a8db3846ab3729