This PR moves the definitions for:
* `sym_int`
* `sym_ceil` (used only for `sym_int`)
* `sym_floor` (used only for `sym_int`)
* `sym_float`
from `torch/fx/experimental/symbolic_shapes.py` to `torch/__init__.py`, where `SymInt` and `SymFloat` are already defined.
This removes the need for several in-line imports, and enables proper JIT script gating for #91318. I'm very open to doing this in a better way!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91317
Approved by: https://github.com/ezyang, https://github.com/anijain2305
Summary: Introduce causal mask
This PR introduces a causal mask option _causal_mask (as well as causal mask detection if attn_mask is provided), since current custom kernels do not support arbitrary masks.
Test Plan: sandcastle & github ci/cd
Differential Revision: D41723137
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90508
Approved by: https://github.com/albanD
Continuation after https://github.com/pytorch/pytorch/pull/90163.
Here is a script I used to find all the non-existing arguments in the docstrings (the script can give false positives in presence of *args/**kwargs or decorators):
_Edit:_
I've realized that the indentation is wrong for the last `break` in the script, so the script only gives output for a function if the first docstring argument is wrong. I'll create a separate PR if I find more issues with corrected script.
``` python
import ast
import os
import docstring_parser
for root, dirs, files in os.walk('.'):
for name in files:
if root.startswith("./.git/") or root.startswith("./third_party/"):
continue
if name.endswith(".py"):
full_name = os.path.join(root, name)
with open(full_name, "r") as source:
tree = ast.parse(source.read())
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
all_node_args = node.args.args
if node.args.vararg is not None:
all_node_args.append(node.args.vararg)
if node.args.kwarg is not None:
all_node_args.append(node.args.kwarg)
if node.args.posonlyargs is not None:
all_node_args.extend(node.args.posonlyargs)
if node.args.kwonlyargs is not None:
all_node_args.extend(node.args.kwonlyargs)
args = [a.arg for a in all_node_args]
docstring = docstring_parser.parse(ast.get_docstring(node))
doc_args = [a.arg_name for a in docstring.params]
clean_doc_args = []
for a in doc_args:
clean_a = ""
for c in a.split()[0]:
if c.isalnum() or c == '_':
clean_a += c
if clean_a:
clean_doc_args.append(clean_a)
doc_args = clean_doc_args
for a in doc_args:
if a not in args:
print(full_name, node.lineno, args, doc_args)
break
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90505
Approved by: https://github.com/malfet, https://github.com/ZainRizvi
`torch.compile` can be used either as decorator or to optimize model directly, for example:
```
@torch.compile
def foo(x):
return torch.sin(x) + x.max()
```
or
```
mod = torch.nn.ReLU()
optimized_mod = torch.compile(mod, mode="max-autotune")
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89607
Approved by: https://github.com/soumith
Using the same repro from the issue (but with BatchNorm2D)
Rectifies native_batch_norm schema by splitting the schema into 2:
1. one will have NON-optional alias-able running_mean and running_var inputs
2. the other will just not have those parameters at all (no_stats variation)
**Calling for name suggestions!**
## test plan
I've added tests in test_functionalization.py as well as an entry in common_method_invocations.py for `native_batch_norm_legit`
CI should pass.
## next steps
Because of bc/fc reasons, we reroute native_batch_norm to call our new schemas ONLY through the python dispatcher, but in 2 weeks or so, we should make `native_batch_norm_legit` the official batch_norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88697
Approved by: https://github.com/albanD
Summary: In order to make the layer normalization implementation for nested tensors public, it needs to be generalized to accept a normalized_shape argument instead of assuming it to be the last dimension of the nested_tensor. This commit does that, as well as adding extra unit tests to ensure the implementation is correct.
Test Plan:
All unit tests designed to test different ways of using the function work:
`buck test //caffe2/test:nested -- test_layer_norm`
Differential Revision: D40105207
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86295
Approved by: https://github.com/drisspg
Based on @ezyang's suggestion, mode stack now has "one true mode" which is the _only_ mode that can ever be active at the C++ level. That mode's torch dispatch is just to take the top mode in the stack, reenable itself (if we aren't at the end of the mode stack), and run the top mode's torch_{dispatch|function}
This maintains that in the middle of a mode's torch dispatch, the mode itself will not be active. It changes the function the user has to call to see what the current mode is (no longer queries the C++, it's python only) but allows the user to also see the entire mode stack easily
Removes `enable_torch_dispatch_mode` and `.restore()` since neither makes sense in this new setup
### Background
Why do we want this? Well, a pretty common pattern that was coming up was that users had to do something like
```python
## PRE-PR UX
def f(mode):
with mode.restore(): # user needs to understand this restore thing?
...
with Mode() as m:
pass
f(m)
```
Many users were getting error from forgetting to call `.restore` or from forgetting to add the (tbh weird) "mode instantiation" step where they use the mode as a context manager with an empty body. Really, they wanted to treat modes like context managers and just write
```python
## FROM FEEDBACK, USER DESIRED CODE. POSSIBLE POST-PR
def f(mode):
with mode:
...
f(Mode())
```
** Technical Details **
With the old mode stack, we basically had a linked list so the mode itself could only be used once and had a fixed parent. In this new design, the mode stack is just a python list that we're pushing to and popping from. There's only one mode that's ever active at the C++ level and it runs the next mode in the Python list. The modes don't have state on them anymore
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84774
Approved by: https://github.com/ezyang, https://github.com/zou3519
As per the title. Fixes: #81161
- [x] add ErrorInputs
- ~[ ] dtype argument?~
- ~[ ] casting argument?~
As discussed offline with @kshitij12345, we can currently ignore `dtype` and `casting` arguments.
cc: @kshitij12345!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82946
Approved by: https://github.com/mruberry
unflatten now has a free function version in torch.flatten in addition to
the method in torch.Tensor.flatten.
Updated docs to reflect this and polished them a little.
For consistency, changed the signature of the int version of unflatten in
native_functions.yaml.
Some override tests were failing because unflatten has unusual
characteristics in terms of the .int and .Dimname versions having
different number of arguments so this required some changes
to test/test_override.py
Removed support for using mix of integer and string arguments
when specifying dimensions in unflatten.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81399
Approved by: https://github.com/Lezcano, https://github.com/ngimel
Currently we have 2 ways of doing the same thing for torch dispatch and function modes:
`with push_torch_dispatch_mode(X)` or `with X.push(...)`
is now the equivalent of doing
`with X()`
This removes the first API (which is older and private so we don't need to go through a deprecation cycle)
There is some risk here that this might land race with a PR that uses the old API but in general it seems like most are using the `with X()` API or `enable_torch_dispatch_mode(X())` which isn't getting removed.
EDIT: left the `with X.push(...)` API since there were ~3 land races with that over the past day or so. But made it give a warning and ask users to use the other API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78215
Approved by: https://github.com/ezyang