Commit Graph

3 Commits

Author SHA1 Message Date
chunyuan
8b11d81058 [Re-landing 68111] Add JIT graph fuser for oneDNN Graph API (Preview4.1)
Re-landing https://github.com/pytorch/pytorch/pull/68111

## Description
Preview4 PR of this [RFC](https://github.com/pytorch/pytorch/issues/49444).

On the basis of https://github.com/pytorch/pytorch/pull/50256, the below improvements are included:

- The [preview4 release branch](https://github.com/oneapi-src/oneDNN/releases/tag/graph-v0.4.1) of the oneDNN Graph API is used
- The fuser now works with the profiling graph executor. We have inserted type check nodes to guard the profiled tensor properties.

### User API:
The optimization pass is disabled by default. Users could enable it by:
```
torch.jit.enable_onednn_fusion(True)
```

### Performance:
[pytorch/benchmark](https://github.com/pytorch/benchmark) tool is used to compare the performance:
- SkyLake 8180 (1 socket of 28 cores):

  ![image](https://user-images.githubusercontent.com/65992142/151162305-05e44425-a24e-4d5e-94e1-743b40b87a8c.png)

- SkyLake 8180 (single thread):

  ![image](https://user-images.githubusercontent.com/65992142/151162528-69f90b79-d08d-46b8-8775-d80a6ccbce8a.png)
 \* By mapping hardswish to oneDNN Graph, it’s 8% faster than PyTorch JIT (NNC + OFI)
  \** We expect performance gain after mapping transpose, contiguous & view to oneDNN graph ops

### Directory structure of the integration code
Fuser-related code are placed under:
```
torch/csrc/jit/codegen/onednn/
```

Optimization pass registration is done in:
```
torch/csrc/jit/passes/onednn_graph_fuser.h
```

CMake for the integration code is:
```
caffe2/CMakeLists.txt
```

## Limitations

- In this PR, we have only supported the optimization on Linux platform. The support on Windows and MacOS will be enabled as the next step.
- We have only optimized the inference use case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74596
Approved by: https://github.com/malfet
2022-04-29 01:01:33 +00:00
Michael Suo
e5bf87963d Revert D34584878: [pytorch][PR] Add JIT graph fuser for oneDNN Graph API (Preview4)
Test Plan: revert-hammer

Differential Revision:
D34584878 (7dd0823011)

Original commit changeset: ce817aa8cc90

Original Phabricator Diff: D34584878 (7dd0823011)

fbshipit-source-id: a941aaad34f8fe5f0c51f719f9f5c29b811c4d5b
(cherry picked from commit a43262ec7521b1665b02a64d3f279e72ee2344b9)
2022-03-21 23:07:14 +00:00
chunyuan
7dd0823011 Add JIT graph fuser for oneDNN Graph API (Preview4) (#68111)
Summary:
## Description
Preview4 PR of this [RFC](https://github.com/pytorch/pytorch/issues/49444).

On the basis of https://github.com/pytorch/pytorch/pull/50256, the below improvements are included:

- The [preview4 release branch](https://github.com/oneapi-src/oneDNN/releases/tag/graph-v0.4.1) of the oneDNN Graph API is used
- The fuser now works with the profiling graph executor. We have inserted type check nodes to guard the profiled tensor properties.

### User API:
The optimization pass is disabled by default. Users could enable it by:
```
torch.jit.enable_onednn_fusion(True)
```

### Performance:
[pytorch/benchmark](https://github.com/pytorch/benchmark) tool is used to compare the performance:
- SkyLake 8180 (1 socket of 28 cores):

  ![image](https://user-images.githubusercontent.com/65992142/151162305-05e44425-a24e-4d5e-94e1-743b40b87a8c.png)

- SkyLake 8180 (single thread):

  ![image](https://user-images.githubusercontent.com/65992142/151162528-69f90b79-d08d-46b8-8775-d80a6ccbce8a.png)
 \* By mapping hardswish to oneDNN Graph, it’s 8% faster than PyTorch JIT (NNC + OFI)
  \** We expect performance gain after mapping transpose, contiguous & view to oneDNN graph ops

### Directory structure of the integration code
Fuser-related code are placed under:
```
torch/csrc/jit/codegen/onednn/
```

Optimization pass registration is done in:
```
torch/csrc/jit/passes/onednn_graph_fuser.h
```

CMake for the integration code is:
```
caffe2/CMakeLists.txt
```

## Limitations

- In this PR, we have only supported the optimization on Linux platform. The support on Windows and MacOS will be enabled as the next step.
- We have only optimized the inference use case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68111

Reviewed By: eellison

Differential Revision: D34584878

Pulled By: malfet

fbshipit-source-id: ce817aa8cc9052ee9ed930c9cf66be83449e61a4
(cherry picked from commit cd17683aa7d9c0947df45a1ab53627feff795587)
2022-03-21 22:12:19 +00:00