Commit Graph

8 Commits

Author SHA1 Message Date
Zachary DeVito
8a38a53e4d Allow types as node attributes (#26268)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26268

This is necessary to represent operators like isinstance where
the type needs to be recorded in the node.

This diff does not actually use the attributes for anything yet.
One plausible thing to do in the future would be use attributes to
fill in the values of type variables for nodes whose schema include
type variables rather than rematching them from the arguments. However,
this change is not required for isinstance so I have left it for later.

Test Plan: Imported from OSS

Differential Revision: D17412855

Pulled By: zdevito

fbshipit-source-id: 7a2618c8a9f9dfc94858af79afbf433518eda4b3
2019-10-01 16:46:55 -07:00
Horace He
f81db8afb8 Initial torchbind prototype (#21098)
Summary:
I have some test code in there as well, along with a script "test_libtorch" to run it. You'll need to modify `test_libtorch` to point to where you have `pytorch` built. I currently require that `pybind11` is included as a subdirectory of the test, but added it to the `.gitignore` to make this reviewable.

Currently, something like this works:
```cpp
struct Foo {
  int x, y;
  Foo(): x(2), y(5){}
  Foo(int x_, int y_) : x(x_), y(y_) {}
  void display() {
    cout<<"x: "<<x<<' '<<"y: "<<y<<endl;
  }
  int64_t add(int64_t z) {
    return (x+y)*z;
  }
};
static auto test = torch::jit::class_<Foo>("Foo")
                    .def(torch::jit::init<int64_t, int64_t>())
                    .def("display", &Foo::display)
                    .def("add", &Foo::add)
                    .def("combine", &Foo::combine);

```
with
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val.display()
    print(val.add(3))
```
results in
```
x: 5 y: 3
24
```

Current issues:
- [x] The python class created by torchscript doesn't interactly properly with the surrounding code.
```
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    return val
```
- [x] Doesn't properly take in non-pointer classes. Can't define this function signature in cpp (We don't want to support this I believe).
```cpp
  void combine(Foo x) {
```

- [x] Has some issues with memory for blobs when constructing multiple objects (fix constant propagation pass to not treat capsules as the same object).
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val2 = torch._C.Foo(100, 0)
    val.display()
    print(val.add(3))
```
- [ ] Can't define multiple constructors (need to define overload string. Currently not possible since we don't support overloaded methods).
- [x] `init` is a little bit different syntax than `pybind`. `.init<...>()` instead of `.def(py::init<>())`
- [x] I couldn't figure out how to add some files into the build so they'd be copied to the `include/` directories, so I symlinked them manually.
- [ ] Currently, the conversion from Python into Torchscript doesn't work.
- [ ] Torchbind also currently requires Python/Pybind dependency. Fixing this would probably involve some kind of macro to bind into Python when possible.
- [ ] We pass back into Python by value, currently. There's no way of passing by reference.
- [x] Currently can only register one method with the same type signature. This is because we create a `static auto opRegistry`, and the function is templated on the type signature.

Somewhat blocked on https://github.com/pytorch/pytorch/pull/21177. We currently use some structures that will be refactored by his PR (namely `return_type_to_ivalue` and `ivalue_to_arg_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21098

Differential Revision: D16634872

Pulled By: Chillee

fbshipit-source-id: 1408bb89ea649c27d560df59e2cf9920467fe1de
2019-08-02 18:45:15 -07:00
Roy Li
c705d9eb1e Introduce DeprecatedTypeProperties class (#17991)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991

changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.

Reviewed By: ezyang

Differential Revision: D14443117

fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
2019-04-04 02:24:13 -07:00
Mikhail Zolotukhin
1905bbb01d Include ATen/core/functional.h directly instead of torch/csrc/utils/functional.h. (#16377)
Summary:
One more shim removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16377

Differential Revision: D13821816

Pulled By: ZolotukhinM

fbshipit-source-id: 007f014d404de51841437db7eef28367a2f6e46b
2019-01-30 14:02:34 -08:00
Mikhail Zolotukhin
47bf30661f Directly include headers from ATen.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16287

Differential Revision: D13792949

Pulled By: ZolotukhinM

fbshipit-source-id: d627d8dc469df048063c70d0b5b8d33fede809a3
2019-01-24 11:22:27 -08:00
Michael Suo
f636dc9276 clang format world (#15524)
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.

Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524

Differential Revision: D13547989

Pulled By: suo

fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
2018-12-26 06:55:01 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Elias Ellison
00aedfc0e2 constant pooling pass (#12222)
Summary:
Add a pass to move all constants to the beginning of the graph, and deduplicate.

This extends https://github.com/pytorch/pytorch/pull/10231 to also handle constants introduced in inlining, constant propagation, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12222

Reviewed By: driazati

Differential Revision: D10201616

Pulled By: eellison

fbshipit-source-id: bc9c5be26868c8b5414257a0d4462de025aeb9bd
2018-10-08 11:55:02 -07:00