Implement traceable config patching for Dynamo: enables restricted patching of Dynamo config where user can use a context manager/decorator to change tracing behavior for parts of the code.
The new `dont_skip_tracing` decorator/context manager for ignoring most trace rules is easily implemented with this more generic traceable config patching feature.
Implementation:
- Create a new specialized context manager class representing a wrapper around torch._dynamo.config.patch
- Dynamo doesn't trace into the context manager but updates config at compile time
- Correctness is based on our correctness for handling supported context managers
- Implementation is inspired by how `GradModeVariable` is implemented.
Previous attempts: https://github.com/pytorch/pytorch/pull/148736 (decorator-only global approach) and https://github.com/pytorch/pytorch/pull/149439 (decorator-only traceback approach)
See https://docs.google.com/document/d/1vWNwKL_jpg-PLopifcaSa338wks3GqSVF4GHRguybGg/edit?tab=t.0 for more details on implementation - including previous approaches.
NOTE: this PR fixes a bug where skipped code objects were not tracked by convert_frame.py, leading to cases where code objects would be automatically skipped even after `torch._dynamo.reset()`. This exposed some latent dynamo-wrapped test failures in CI that previously passed in CI but not locally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150586
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/anijain2305
Implement traceable config patching for Dynamo: enables restricted patching of Dynamo config where user can use a context manager/decorator to change tracing behavior for parts of the code.
The new `dont_skip_tracing` decorator/context manager for ignoring most trace rules is easily implemented with this more generic traceable config patching feature.
Implementation:
- Create a new specialized context manager class representing a wrapper around torch._dynamo.config.patch
- Dynamo doesn't trace into the context manager but updates config at compile time
- Correctness is based on our correctness for handling supported context managers
- Implementation is inspired by how `GradModeVariable` is implemented.
Previous attempts: https://github.com/pytorch/pytorch/pull/148736 (decorator-only global approach) and https://github.com/pytorch/pytorch/pull/149439 (decorator-only traceback approach)
See https://docs.google.com/document/d/1vWNwKL_jpg-PLopifcaSa338wks3GqSVF4GHRguybGg/edit?tab=t.0 for more details on implementation - including previous approaches.
NOTE: this PR fixes a bug where skipped code objects were not tracked by convert_frame.py, leading to cases where code objects would be automatically skipped even after `torch._dynamo.reset()`. This exposed some latent dynamo-wrapped test failures in CI that previously passed in CI but not locally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150586
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/anijain2305
We've root caused this to correctly throwing attribute error on ScriptFunction
when missing attributes are caused. This PR will fix crashes that are showing
up. I'm going to stack a second PR to fix torch._c.ScriptFunction just being a
very badly behaving python object (which should also fix this
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147894
Approved by: https://github.com/jansel
## Context
> **Note:** `mark_traceable` got renamed to `nonstrict_trace` after
> offline discussion. The reasons are (1) it aligns with `torch.export`'s
> `nonstrict` notion, and (2) it's more definitive in behavior suggestion.
1. [Overall Design](https://docs.google.com/document/d/1O-dR2ZQaJQVt_v67AVcDCw2yJLtqgkZFwoXK0buEWRg/edit?tab=t.0)
2. [Dynamo graph representation with `torch._higher_order_ops.flat_apply`](https://docs.google.com/document/d/1YHl5nPTJvYeCPE5TO9uA18DPWNgUYGE4gCn6bFvXcBM/edit?tab=t.0#heading=h.xtw3hhbro4gn)
## Summary
This patch adds a `torch._dynamo.nonstrict_trace` decorator, which
currently is an enhanced version of `torch._dynamo.allow_in_graph` (see
docstring for their differences). Specifically, this patch focuses on
the UI and functionality prototyping/plumbing.
The main enhancement is supporting more input types, and the
implementation challenge lies in reconstructing the input objects from
Dynamo `VariableTracker` (while accounting for buffered side-effects and
guards). This patch takes a middle-ground (simple implementation with a
bit of user labor), by
1. asking the user to provide pytree registration for non-proxy-able
input types,
2. letting Dynamo trace through `pytree_flatten` (which accounts for
buffered side-effects and guards automatically),
3. and passing in the TreeSpec as a graph attribute constant into
`torch._higher_order_ops.flat_apply` (which unflattens the inputs and
invokes the underlying function).
## Next Steps
In subsequent patches, we will try to support the following:
- annotating on class method
- reads to global tensors
- inputs that contains `pytree.register_constant`-ed instances.
- function as input
- more output types (e.g., any pytree-registered type)
- `torch.nn.Module` as inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146367
Approved by: https://github.com/zou3519
ghstack dependencies: #146714
BuiltinVariable.call_hasattr() overrides the base class - but actually behaves differently. The base is `obj.call_hasattr(tx, attr)` but BuiltinVariable's version is `<unused>.call_hasattr(tx, obj, attr)`.
The BuiltinVariable version is used as a pattern from `call_self_handler()` for `BuiltinVariable(hasattr)`. I think the other version is just used for internal `hasattr(obj, name)` so I renamed that one to `call_obj_hasattr`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145551
Approved by: https://github.com/anijain2305