In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
Resolves issue #140464 by adding an option to not specialize int from nn.Modules (False by default to maintain existing behavior).
Test Plan: `buck2 test mode/opt caffe2/test/dynamo:test_dynamo -- test_modules.py::NNModuleTests::test_nn_module_unspec_int_attr`
Differential Revision: D66837042
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142829
Approved by: https://github.com/ezyang, https://github.com/yanboliang
Fixes https://github.com/pytorch/pytorch/issues/141305.
```python
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
def true_fn(x):
return x + a
def false_fn(x):
return x + b * z
# When exporting with non-strict: a and b are symints,
# so torch.compile need to wrap and trace symint inputs.
return torch.cond(x.shape[0] > 5, true_fn, false_fn, (x,))
```
In non-strict export, when inputs are annotated with dynamic shape, the a, and b in above example are torch.SymInt type. true_fn and false_fn will have closure that're of torch.SymInt types. The error is triggered because we didn't handle SymInt inputs in dynamo and ends up using a UserDefinedObjectVariable for it, which doesn't have a proxy. We added support by following how we handle SymBool input previously.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141524
Approved by: https://github.com/zou3519
ghstack dependencies: #142185
This adds an option to cause automatic dynamic shapes to trigger
unbacked SymInts rather than backed SymInts. This can potentially
help if you are still seeing recompilations from 0/1 specialization
but it also might just cause your program to fail with
GuardOnDataDependent errors.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141415
Approved by: https://github.com/bobrenjc93
We introduced a special graph break to avoid max-recursion-depth error
in #100296.
After #111415, the original `test_list_self_reference` no longer
triggers the special graph break because we started modeling root frame
free variables with `LazyVariableTracker`.
After #117426, we no longer build the list items eagerly, and they'll hit
`variable_tracker_cache` when they get lazily constructed later.
As a result, this patch updates the `test_list_self_reference` test and
removes the special graph break.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142438
Approved by: https://github.com/jansel
ghstack dependencies: #142437
Dynamo was generating `GetItemSource(tuple_source, index)` for items of
`NamedTupleVariable`, but that stops working when a user supplied named
tuple has a custom `__getitem__` function with different semantics.
This patch
- fixes the aforementioned issue by using `AttrSource` instead.
- handles named tuple outside `wrap_listlike`, by removing the special
case of named tuple in `BaseListVariable.cls_for_instance`, since the
semantics of named tuple is different enough.
- makes user all constructions of `NamedTupleVariable` has items with
proper sources.
Fixes#142399.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142437
Approved by: https://github.com/jansel
Fixes https://github.com/pytorch/pytorch/issues/141305.
```python
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
def true_fn(x):
return x + a
def false_fn(x):
return x + b * z
# When exporting with non-strict: a and b are symints,
# so torch.compile need to wrap and trace symint inputs.
return torch.cond(x.shape[0] > 5, true_fn, false_fn, (x,))
```
In non-strict export, when inputs are annotated with dynamic shape, the a, and b in above example are torch.SymInt type. true_fn and false_fn will have closure that're of torch.SymInt types. The error is triggered because we didn't handle SymInt inputs in dynamo and ends up using a UserDefinedObjectVariable for it, which doesn't have a proxy. We added support by following how we handle SymBool input previously.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141524
Approved by: https://github.com/zou3519
ghstack dependencies: #141610, #142185
This PR fixes the issue where AOTAutograd would produce a guard that used a symbolic value
that came from one of the input's base.
```python
@torch.compile(backend="aot_eager", dynamic=True)
def f(a, b):
a.add_(1)
b.add_(1)
return a
x = torch.ones(10)
f(x[1:], x[1:])
```
In the example above, AOTAutograd functionalizes the mutation by making use of
`as_strided_scatter` operation, which produces the guard: `s0 >= s1 + 1`, where:
- `s0`: corresponds to `x.size()[0]`
- `s1`: corresponds to `a.size()[0]`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139554
Approved by: https://github.com/bdhirsh
As title, this also uncovered a few invalid use cases; the cases that
cause error are fixed in separate patches prior to this patch, and the
rest are fixed in this patch.
This patch also moves a few `.source` mutation to variable construction,
to increase the coverage of the validation.
Fixes#133027.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141717
Approved by: https://github.com/jansel
ghstack dependencies: #141713, #141714, #141715, #141902, #141716
A subsequeunt patch attempts to fix a side-effect issue for range
iterators, which in turn exposed an exising issue on guards for range
iterators -- the following test started failing:
```
PYTORCH_TEST_WITH_DYNAMO=1 python test/test_tensor_creation_ops.py TestTensorCreationCPU.test_hstack_column_stack_cpu_int16
```
This patch adds a `RANGE_ITERATOR_MATCH` guard to make sure that we
properly guard on range iterators, and adds a regression test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141902
Approved by: https://github.com/jansel
ghstack dependencies: #141713, #141714, #141715
Previously we never replayed side effects to `DequeVariable` with a
source; the bug was already in the `test_deque_input` test, but went
unnoticed because we didn't check the deque objects.
This patch adds limited but practical support for this (see comments in
`side_effects.py` for why limited), and updates the deque tests to check
for this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141714
Approved by: https://github.com/jansel
ghstack dependencies: #141713
Prior to this patch, we are using `ConstantVariable.create` to create VT
for frozenset objects, and intended yet failed to predicate that on all
itmes being literals (see https://github.com/pytorch/pytorch/pull/140984#discussion_r1847393736).
The code was from https://github.com/pytorch/torchdynamo/commit/7c03434 and
the original goal was to help DBR quantization, but as the new test in
this patch shows, it could lead to silent incorrectness.
Upon a closer look, this exposes some subtleties in how Dynamo handles
`ConstantVariable` and `LOAD_CONST`, so this patch both fixes the
aforementioned issue and documents, enforces, and makes explicit the
invariants around `ConstantVariable` and `LOAD_CONST` -- only immutable
objects are supported.
Specifically, this patch:
1. refine the checks for wrapping a `frozenset` object, document why we
can't just wrap its items directly due to lack of `Sourcec` for set
items, and use a safe workaround (`SourcelessBuilder`) to ensure
soundness while keeping the DBR quantization support.
2. Adds more types to `common_constant_types`, thereby making
`ConstantVariable.is_base_literal` more lenient, and strictly checks
this property in the constructor of `ConstantVariable`.
3. Change relevant uses of `create_instruction("LOAD_CONST", ...)` to
`create_load_const` which checks `is_safe_constant`, and makes
developer overrides explicit by using `create_load_const_unchecked`
when needed.
4. In a few places, use more specific `VariableTracker`, e.g.,
`TypingVariable` rather than `ConstantVariable`, and
`FrozensetVariable` rather than `SetVariable`.
(2) and (3) are mainly to future-proof Dynamo against bugs like (1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141504
Approved by: https://github.com/jansel
There are 4 parts (they are hard to further break into smaller ones cause they're highly coupled) in this PR:
1. **Whenever we call create_graph_input, we try to bind the symbols in the graph input.**
We've enforced the invariant that all create_graph_inputs calls must provide an example value, we could intercept at the create_graph_input calls (This PR only handles free symbols in tensors).
2. **We cache the bound_symbols** to avoid lift the same symbol repeated.
3. For lifted symbols, we re-used **lifted_freevars** i.e. the mapping between symbol proxy in parent graph to the lifted phs in current subgraph, which we handle lifted tensors. In this way, all hops that supports lifted tensors should be able to handle lifted_symints automatically (at least in dynamo part).
4. For **unbacked symbols** created during tracing, we need to also bound these symbols to its proxy. This is to support the tests cases where we want to lift unbacked symbols as input. We need the proxy of the unbacked symbol in parent graph in order to properly create the args to the hop.
5. We change all the tests after free symbols are lifted in subgraphs. And also supports the lifted symbols in existing higher order ops.
**The interaction of nested tracers:**
The previous design for lifting tensor closures is that: suppose we're in nested tracers, whenever we see a new proxy that's not created by create tracer, we recursively look for the proxy in parent tracer until we find the tracer that creates this proxy (either a placeholder or some intermediate results). More detail is in Note [Nested SubgraphTracer and free_variable handling].
Given the above design, the plan for lifting the free symbols is: whenever we lift a free tensor to be the inputs of current subgraph, we'll look at the symbols in it and bind the symbols at the same time.
For example, suppose we have the following function:
```python
def f(x: [s1, s2]):
def true_f():
def true_f_inner():
return x.sin()
```
what will happen in time order:
1. we create a subtracer 1 and start to speculate the outer cond's true_f
2. we create a another subtracer 2 and start to speculate the inner cond's true_f_inner.
3. dynamo realize the tensor input x by calling wrap_tensor in top-level to create graph input x (tracer 0), we bind the symbol s1, s2 after ph for x is created. So the graph now looks like:
```python
def gm(s1, s2, x):
```
4. when seeing TensorVariable.call_method of x, tracer2 wants to create a call_function(sin, proxy_of_x), but it finds that proxy_of_x is not created by current tracer. So it recursively look up its parent tracer1 and find parent tracer1 also doesn't track this proxy_of_x then it finds the root tracer0, who is the creator of it and tracks it as a ph. Then tracer 1 create_graph_input to lift the closure to its input ph1 and add (proxy_of_x: ph1) k-v in **lifted_freevars** of tracer 1.
Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(x):
```
5. Since there are free symbols inside this new tensor input, tracer 1 also binds the symbols (maybe_bind_symbol), which calls create_graph_input for s1 and s2. Now the graph looks like
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
```
6. then it goes back to tracer 2, and call create_graph_input for x and get ph2, tracer 2's **lifted_freevars** records (ph1, ph2). and tracer 2 also binds the symbols in this new tensor input. Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1, s2, x):
```
7. Finally the sin call_function node is created by tracer 2.
**This PR also handles the following cases:**
- What if we lift two tensors share the same symbol? e.g. x1 [s1, s2], x2 [s2, s3]? Each subtracer maintains bound_symbols as a cache that maps a symbol.expr to its proxy in current tracer. So when we see x1, we'll track s1 and s2 as inputs and bound s1 to ph1, s2 to ph2. So when we try to bind symbols of x2, s2 will already be tracked so no graph input is created.
- what if a subgraph close over a symint? e.g.
```python
def f(x):
def true_f():
c = x.size(0)
def true_fn_inner():
return c
```
When we speculate true_fn_inner, we find proxy_of_c is not tracked by tracer 2, so it recursively looks up its parent. At this point, x and its symbols have been lifted as input of true_f (as a result of lifting x during tracing true_f in tracer 1. Specifically the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner():
```
So tracer 2 is able to find that s1 have been tracked as ph in tracer 1 so it returns back to gm and call create_graph_input on s1. The graph now looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1):
return s1
```
- What if subgraph close over an unbacked symint? e.g.
```python
def f(x):
def true_f():
c = x.item()
def true_f_inner():
return c
```
When x.item() is called, proxy_of_c and its symnode variable is created for tracer 1, and we also call track_unbacked_symbols to record this relationship. So when tracer 2 finds proxy_of_c is not created by current tracer, it recursivelly looks up its parent tracer and finds that that expression u0 has been tracked as a result of track_unbacked_symbol in tracer 1. So it will stop the recursion and create_graph_input u0 in tracer 2. Graph looks like:
```python
def f(x):
def true_f(s1, s2, x):
c = x.item()
def true_gm_inner(u0):
return u0
cond(pred, true_gm_inner, false_gm_inner, (c,))
```
- what if subgraph close over a tensor with unbacked symint shape?
```python
def f(x):
def true_f():
c = x.item()
r = torch.randn((c,))
def true_f_inner():
return r + 1
```
This is the same as the case of closing over tensors with backed shapes. where we first lift r, then bind u0 in it, which recursively bind_symint of u0 in its parent and found u0 is tracked in parent tracer as a result of .item() call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138363
Approved by: https://github.com/zou3519