Commit Graph

55 Commits

Author SHA1 Message Date
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Jason Lu
bc88028e8e Back out "Reland "Make adding buffers more like adding parameters (#104069)" (#106224)" (#106743)
Summary:
Original commit changeset: 81319beb97f3

Original Phabricator Diff: D47961182

Test Plan: revert to maintain backward compat with legacy ads_dper3 production package. Read details in: S357822

Reviewed By: atuljangra

Differential Revision: D48131623

@diff-train-skip-merge
(D48131623 landed internally)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106743
Approved by: https://github.com/malfet
2023-08-08 15:27:34 +00:00
Mikayla Gawarecki
d8e5f2aa6d Reland "Make adding buffers more like adding parameters (#104069)" (#106224)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106224
Approved by: https://github.com/atalman, https://github.com/albanD
2023-07-31 17:18:56 +00:00
Andrey Talman
c6653b65d8 Back out "Make adding buffers more like adding parameters (#104069)" (#105581)
Summary:
D47537831 is breaking pyper tests: https://fb.workplace.com/groups/802176577445480/posts/1018902842439518/

with `TypeError: register_buffer() takes 3 positional arguments but 4 were given`

Original commit changeset: d4b4069fbd38

Original Phabricator Diff: D47537831

Test Plan:
```
buck2 run //caffe2/torch/fb/training_toolkit/integration_tests/training_lifecycle/cogwheel_tests/pyper_release_v2:cogwheel_smallworld_inline_cvr_infer_pyper_pyper__canary_offline_training-launcher -- --run-harness-in-tupperware --build-fbpkg ads_dper3 --build-fbpkg training_platform
```

Reviewed By: atalman

Differential Revision: D47600140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105581
Approved by: https://github.com/mikaylagawarecki
2023-07-20 03:39:53 +00:00
ekamiti
32d422f335 Make adding buffers more like adding parameters (#104069)
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.

Fixes #35735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki
2023-07-17 17:59:05 +00:00
Jane Xu
6dc81f7bdd Update docs that Parameters are immune to no_grad mode (#95232)
Fixes https://github.com/pytorch/pytorch/issues/83998

![image](https://user-images.githubusercontent.com/31798555/220971800-4af57d92-9f15-4e13-bfe4-73e2ff1cd943.png)
![image](https://user-images.githubusercontent.com/31798555/221019508-d7330a16-7f01-4d37-a1af-a4905e9596c4.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95232
Approved by: https://github.com/soulitzer
2023-02-23 23:33:19 +00:00
PyTorch MergeBot
cb6e38d89d Revert "Update docs that Parameters are immune to no_grad mode (#95232)"
This reverts commit 5783cee2a3.

Reverted https://github.com/pytorch/pytorch/pull/95232 on behalf of https://github.com/ZainRizvi due to This caused the test_doc_examples test to fail on trunk
2023-02-23 17:43:45 +00:00
Jane Xu
5783cee2a3 Update docs that Parameters are immune to no_grad mode (#95232)
Fixes https://github.com/pytorch/pytorch/issues/83998

![image](https://user-images.githubusercontent.com/31798555/220971800-4af57d92-9f15-4e13-bfe4-73e2ff1cd943.png)
![image](https://user-images.githubusercontent.com/31798555/220971892-35554d17-fc44-4211-9017-7a5555ae3bb1.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95232
Approved by: https://github.com/soulitzer
2023-02-23 16:41:54 +00:00
Xuehai Pan
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
kshitij12345
745fe35df5 [follow-up] Python Attr Serialization (#88913)
Ref: https://github.com/pytorch/pytorch/pull/81616#issuecomment-1307595402
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88913
Approved by: https://github.com/albanD
2023-01-13 17:38:51 +00:00
PyTorch MergeBot
f5fbb5001f Revert "[follow-up] Python Attr Serialization (#88913)"
This reverts commit 086b251f9a.

Reverted https://github.com/pytorch/pytorch/pull/88913 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally
2022-12-02 20:14:11 +00:00
Kshiteej K
086b251f9a [follow-up] Python Attr Serialization (#88913)
Ref: https://github.com/pytorch/pytorch/pull/81616#issuecomment-1307595402
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88913
Approved by: https://github.com/albanD
2022-11-29 16:46:20 +00:00
kshitij12345
f74946324e [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>

NOTE : **BC-Breaking** : After this PR, all tensors (also regular tensors) will be serialised using `_rebuild_from_type_v2`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD, https://github.com/kurtamohler
2022-11-11 21:11:12 +00:00
PyTorch MergeBot
78a0ca29d9 Revert "[fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)"
This reverts commit 54b6188cc6.

Reverted https://github.com/pytorch/pytorch/pull/81616 on behalf of https://github.com/mehtanirav due to Internal publishing is broken
2022-11-07 18:51:16 +00:00
Kshiteej K
54b6188cc6 [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>

NOTE : **BC-Breaking** : After this PR, all tensors (also regular tensors) will be serialised using `_rebuild_from_type_v2`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD, https://github.com/kurtamohler
2022-11-03 09:57:47 +00:00
Kazuaki Ishizaki
2ddefbdc3c Fix typos used in documents under torch directory (#88300)
This PR fixes typos, in comments of Python files, that are found from a search box at https://pytorch.org/docs/master/search.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88300
Approved by: https://github.com/lezcano
2022-11-02 09:38:13 +00:00
Shenxiu Liu
ec714e33a3 [PT] Allowing deepcopy in unitialized parameter (#83809)
Summary: UninitializedParameter overrides `__new__` method thus the parent class's `__deepcopy__` method doesn't work anymore, causing models using LazyModule cannot be instantiated.

Test Plan:
locally copied lazy module.

After change:
```
shenxiu@devbig1109:fbcode  (5c57dd833)$ bento console --kernel pytorch --local
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/scribeutil/lib.py:9: DeprecationWarning: The "thrift" clients in libfb.py.thrift_clients are not proper thrift clients, and often have unexpected or incorrect behaviour. They are also completely unsupported. Please use a supported client from https://fburl.com/srpy or a supported raw thrift client if you cannot use ServiceRouter.
  from libfb.py.thrift_clients.scribe_thrift_client import ScribeThriftClient
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/ipykernel/iostream.py:14: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  from imp import lock_held as import_lock_held
Python 3.8.6 (default, Jun 10 2022, 04:32:13)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import copy
   ...: import torch
   ...:
   ...: class LazyModule(torch.nn.Module):
   ...:     def __init__(self):
   ...:         super().__init__()
   ...:         self.m = torch.nn.LazyLinear(10)
   ...:
   ...:     def forward(self, input):
   ...:         x = self.m(input)
   ...:         return x
   ...:
   ...: m = LazyModule()
   ...: print(m.state_dict())
copy.deepcopy(m)
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/mpmath/ctx_mp_python.py:892: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if other is 0:
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/mpmath/ctx_mp_python.py:986: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if other is 0:
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/sympy/solvers/diophantine.py:3188: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if feasible is 1:  # it's prime and k == 2
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/sympy/plotting/plot.py:520: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if self.xscale is 'log':
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/sympy/plotting/plot.py:540: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if self.xscale is 'log':
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/sympy/plotting/plot.py:553: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if self.xscale is 'log':
/data/users/shenxiu/fbsource/buck-out/v2/gen/fbcode/26f2c80c27f9e71d/bento/kernels/__bento_kernel_pytorch__/bento_kernel_pytorch#link-tree/sympy/plotting/plot.py:560: SyntaxWarning: "is" with a literal. Did you mean "=="?
  if self.xscale is 'log':
OrderedDict([('m.weight', <UninitializedParameter>), ('m.bias', <UninitializedParameter>)])

In [2]: copy.deepcopy(m)
Out[2]:
LazyModule(
  (m): LazyLinear(in_features=0, out_features=10, bias=True)
)
```

Before change, above code will give
```
TypeError: empty() received an invalid combination of arguments - got (int, dtype=NoneType, device=bool), but expected one of:
 * (tuple of ints size, *, tuple of names names, torch.memory_format memory_format, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
 * (tuple of ints size, *, torch.memory_format memory_format, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
 * (tuple of SymInts size, *, torch.memory_format memory_format, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)

```

Cloned n2369721 locally and successful (thru console not notebook because somehow bento notebook doesn't work with buck2 well).

Reviewed By: avilay

Differential Revision: D38866072

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83809
Approved by: https://github.com/ngimel
2022-08-30 05:16:19 +00:00
PyTorch MergeBot
da87fa684c Revert "[fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)"
This reverts commit f3f8d96ea6.

Reverted https://github.com/pytorch/pytorch/pull/81616 on behalf of https://github.com/jeanschmidt due to breaking internal builds
2022-07-21 10:46:24 +00:00
kshitij12345
f3f8d96ea6 [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD
2022-07-20 18:45:33 +00:00
Elias Ellison
268bbecf1c Add option for allowing non-fake inputs, add deepcopy impl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79580

Approved by: https://github.com/samdow
2022-06-17 19:36:26 +00:00
Joel Benjamin Schlosser
0794d59d76 Throw a nice error when SubTensor.__torch_dispatch__() returns the wrong type for detach()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77655

Approved by: https://github.com/albanD
2022-05-18 20:00:42 +00:00
Joel Benjamin Schlosser
bc34cf5fe4 Support for tensor subclasses as parameters
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73459

Approved by: https://github.com/ezyang, https://github.com/albanD
2022-04-27 19:28:55 +00:00
Can Balioglu
160946e3f3 Use torch.empty() instead of torch.tensor() in torch.nn.Parameter (#66486)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66486

The newly-introduced Python dispatcher mode (`__torch_dispatch__`) does not have support for `torch.tensor()` (see #64360) and this causes friction in the user experience if some `nn.Modules` use `torch.tensor()` either implicitly or explicitly.

This PR replaces calls to `torch.tensor()` in `Parameter`, `UninitializedParameter`, and `UninitializedBuffer` with an equivalent call to `torch.empty()` which serves the same purpose and is syntactically more readable.
ghstack-source-id: 140520931

Test Plan: Since no behavioral change, run the existing unit and integration tests.

Reviewed By: pbelevich

Differential Revision: D31575587

fbshipit-source-id: bd7bdeea54370f3e53dc13bd182b97d0f67146f5
2021-10-13 18:56:36 -07:00
Jeffrey Wan
a7a5992d7d Add no-grad inference mode note (#58513)
Summary:
Adds a note explaining the difference between several often conflated mechanisms in the autograd note
Also adds a link to this note from the docs in `grad_mode` and `nn.module`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58513

Reviewed By: gchanan

Differential Revision: D28651129

Pulled By: soulitzer

fbshipit-source-id: af9eb1749b641fc1b632815634eea36bf7979156
2021-05-25 13:06:54 -07:00
Joel Schlosser
febff45900 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: albanD

Differential Revision: D27939544

Pulled By: jbschlosser

fbshipit-source-id: 4bf517e5f74f093e27ca38a85e732da65e44d805
2021-04-22 16:16:53 -07:00
Joel Schlosser
12b2bc94d7 Revert D27909732: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27909732 (5a09def9b0)

Original commit changeset: d8684b2403ab

fbshipit-source-id: d00d69fae4fa4ed58d9e97e70b27a06a0dcb39e4
2021-04-21 13:44:03 -07:00
Joel Schlosser
5a09def9b0 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: malfet

Differential Revision: D27909732

Pulled By: jbschlosser

fbshipit-source-id: d8684b2403ab7eb336371d118799146a2520bd76
2021-04-21 13:20:11 -07:00
Natalia Gimelshein
92d24e3060 Revert D27855386: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27855386 (40483acc51)

Original commit changeset: dabd505d2a04

fbshipit-source-id: f5bf3120d87861b30a8e1bf11977ad7d27cd8500
2021-04-19 20:07:20 -07:00
Joel Schlosser
40483acc51 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: bdhirsh

Differential Revision: D27855386

Pulled By: jbschlosser

fbshipit-source-id: dabd505d2a04208e74b158570fb2859c736eea2c
2021-04-19 12:24:58 -07:00
Sam Estep
d05e7c163f Revert D27600457: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27600457 (1077f87269)

Original commit changeset: b58bfee61c39

fbshipit-source-id: 19d5bfc5133a3880383731d0332503ca1f3bce0c
2021-04-19 07:47:24 -07:00
Joel Schlosser
1077f87269 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: mrshenli

Differential Revision: D27600457

Pulled By: jbschlosser

fbshipit-source-id: b58bfee61c3917524b4622f63ef216c27a588eb1
2021-04-19 06:58:40 -07:00
Yukio Siraichi
27048c1dfa Remove legacy constructor calls from _torch_ folder. (#53889)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53146
Related to https://github.com/pytorch/pytorch/issues/47112

As mentioned in https://github.com/pytorch/pytorch/issues/47112, the plan is to:

1. Verify that all `torch.Tensor()` scenarios are covered by other functions
2. Scrub internal `torch.Tensor()` uses
3. Update the docs and throw `TORCH_WARN_ONCE` if someone uses `torch.Tensor()`

In this PR, I replaced all occurrences of `torch.Tensor` present in the _torch_ folder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53889

Reviewed By: walterddr, zou3519

Differential Revision: D27190743

Pulled By: jbschlosser

fbshipit-source-id: 7ecc201d57935b8dbb98ae3718b60d95cb55a010
2021-03-19 15:20:19 -07:00
Akifumi Imanishi
b3fda95fe7 Add LazyBatchNormXd (#51862)
Summary:
Same diff with https://github.com/pytorch/pytorch/issues/51548 (cc. albanD)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51862

Reviewed By: izdeby

Differential Revision: D26312289

Pulled By: albanD

fbshipit-source-id: 9cdec0e0c9021c33d10d85010978c7fa5cb4dc60
2021-02-09 10:29:03 -08:00
Alban Desmaison
a930162c69 Revert D26276903: [pytorch][PR] Add LazyBatchNormXd
Test Plan: revert-hammer

Differential Revision:
D26276903 (aa1fd6b45a)

Original commit changeset: 0ac706974178

fbshipit-source-id: bfe01b01cd460f1e2845ea5ef1fc1514e6b6ba54
2021-02-05 12:37:29 -08:00
Akifumi Imanishi
aa1fd6b45a Add LazyBatchNormXd (#51548)
Summary:
This PR implements UninitializedBuffer and LazyBatchnormXd based on https://github.com/pytorch/pytorch/issues/44538. (cc. emcastillo and albanD)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51548

Reviewed By: zhangguanheng66

Differential Revision: D26276903

Pulled By: albanD

fbshipit-source-id: 0ac706974178363f8af075e59b41d5989418922f
2021-02-05 10:27:04 -08:00
Samuel Marks
e6779d4357 [*.py] Rename "Arguments:" to "Args:" (#49736)
Summary:
I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings.

```sh
(pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do
    printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done
Args:      1095
Arguments: 0336
```

It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per:

  - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md)

  - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md)

  - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst)

Therefore, only `Args:` is valid. This PR replaces them throughout the codebase.

PS: For related PRs, see tensorflow/tensorflow/pull/45420

PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736

Reviewed By: albanD

Differential Revision: D25710534

Pulled By: soumith

fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
2020-12-28 09:34:47 -08:00
Emilio Castillo
d38a71d579 torch.nn.modules.LazyModuleMixin and torch.nn.LazyLinear (Shape Inference II) (#44538)
Summary:
Retake on https://github.com/pytorch/pytorch/issues/40493 after all the feedback from albanD

This PR implements the generic Lazy mechanism and a sample `LazyLinear` layer with the `UninitializedParameter`.

The main differences with the previous PR are two;
Now `torch.nn.Module` remains untouched.
We don't require an explicit initialization or a dummy forward pass before starting the training or inference of the actual module. Making this much simpler to use from the user side.

As we discussed offline, there was the suggestion of not using a mixin, but changing the `__class__` attribute of `LazyLinear` to become `Linear` once it's completely initialized. While this can be useful, by the time being we need `LazyLinear` to be a `torch.nn.Module` subclass since there are many checks that rely on the modules being instances of `torch.nn.Module`.
This can cause problems when we create complex modules such as
```
class MyNetwork(torch.nn.Module):
    def __init__(self):
        super(MyNetwork, self).__init__()
        self.conv = torch.nn.Conv2d(20, 4, 2)
        self.linear = torch.nn.LazyLinear(10)
    def forward(self, x):
        y = self.conv(x).clamp(min=0)
        return self.linear(y)
```
Here, when the __setattr__ function is called at the time LazyLinear is registered, it won't be added to the child modules of `MyNetwork`, so we have to manually do it later, but currently there is no way to do such thing as we can't access the parent module from LazyLinear once it becomes the Linear module. (We can add a workaround to this if needed).

TODO:

Add convolutions once the design is OK
Fix docstrings

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44538

Reviewed By: ngimel

Differential Revision: D24162854

Pulled By: albanD

fbshipit-source-id: 6d58dfe5d43bfb05b6ee506e266db3cf4b885f0c
2020-10-19 13:13:54 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Igor Fedan
4926a51010 explicitly provide memory format when calling to clone() at parameter.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28690

Test Plan: Imported from OSS

Differential Revision: D18333355

Pulled By: ifedan

fbshipit-source-id: e02bd556e7b336bb02cd9ec89029a0e5f4f7cbe7
2019-11-07 07:38:44 -08:00
Wei Yang
3cb2470bb3 add __deepcopy__ back to Parameter (#12886)
Summary:
- fix https://github.com/pytorch/pytorch/issues/315
- add `__deepcopy__` back to Parameter class
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12886

Differential Revision: D12838771

Pulled By: weiyangfb

fbshipit-source-id: b2ce12244e36f981d89f6c7cdead63237dd820ea
2018-10-30 12:56:26 -07:00
Edward Yang
3bfa7258b3 Don't serialize hooks (#11705)
Summary:
Fixes #11683.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11705

Differential Revision: D9833057

Pulled By: ezyang

fbshipit-source-id: 18af9bcd77b088326738d567100fbe4a4c869dd6
2018-10-16 20:11:03 -07:00
Marcin Elantkowski
4d28b65fb8 fix serialization of nn.Parameter with dill (#10296)
Summary:
Should resolve #9981.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10296

Differential Revision: D9196353

Pulled By: soumith

fbshipit-source-id: 109b6da42b7240cdbc7a0586745c735bce5e1279
2018-09-01 23:55:40 -07:00
li-roy
8e4fe5dcf4 Fix serialization for Parameters (#8633)
* Fix serialization for Parameters

* address comments

* addres comments
2018-06-19 22:11:13 -04:00
Tongzhou Wang
1c01eabd3c
Codemod to update our codebase to 0.4 standard (#6641)
* Codemod to update our codebase to 0.4 standard

* Update some of the test scri[ts

* remove Variable in test_clip_grad_value

* fix _symbolic_override_wrapper_maker
2018-04-17 22:06:54 -04:00
Tongzhou Wang
8f27c27941 fix legacy tensor __setstate__ (#6251) 2018-04-04 13:36:56 -04:00
Sam Gross
6b3a4637d6
Make the tensor type torch.Tensor instead of torch.autograd.Variable (#5785)
This changes type(tensor) to return `torch.Tensor` instead of
`torch.autograd.Variable`.

This requires a few implementation changes:

 - torch.Tensor is now a regular Python class instead of a
   pseudo-factory like torch.FloatTensor/torch.DoubleTensor
 - torch.autograd.Variable is just a shell with a __new__ function.
   Since no instanes are constructed it doesn't have any methods.
 - Adds torch.get_default_dtype() since torch.Tensor.dtype returns
   <attribute 'dtype' of 'torch._C._TensorBase' objects>
2018-04-03 16:29:25 -04:00
gchanan
696db00bcd
Print Parameters like Variables (i.e. print scalars correctly). (#5119) 2018-02-08 12:33:52 -05:00
Sam Gross
d605058212
Replace Variable.volatile with torch.no_grad() (#3970)
This removes volatile from Variable. The functionality is mostly
replaced by a global (thread-local) flag, which is controlled by
torch.set_grad_enabled() and the context manager torch.no_grad().

In C++, the flag is exposed through GradMode::is_enabled() and GradMode::set_enabled()

Fixes #3627
2017-12-18 15:46:13 -05:00
SsnL
de1f4e69dd raw text (#3327) 2017-10-28 01:24:02 +05:30
Sam Gross
bd5303010d Refactor autograd package to separate Python dependencies. (#662)
The core autograd Variable, Function, and Engine no longer depend on the
Python API. This let's us implement functions in C++. In the future, we
can also multithread engine and release the GIL for most of the
non-Python backwards.
2017-02-13 16:00:16 -08:00