This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.
```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.
```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.
```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
Right now we are susceptive to a race condition where if the torch.compiler.config is not implicitly import via dynamo/builder.py, we will throw an error when trying to set compiler configs. This fixes it by including config in `__all__`.
Previous
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
>>> torch.compiler.config.dynamic_sources =
"L['kwargs']['float_features']"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
```
Now
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148978
Approved by: https://github.com/bdhirsh, https://github.com/laithsakka
While using save_cache_artifacts on internal workloads, we have noticed that repeatedly calling this function after every batch is incredibly expensive. This PR significantly speeds up this function call by opting out of pickle and redesigning serialization algorithm.
Essentially what we want is to be able to call serialize many times without incurring costs from scratch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148227
Approved by: https://github.com/jamesjwu
ghstack dependencies: #148226
This PR introduces the ability to whitelist sources as dynamic. This is particularly useful for large models with graph breaks, as you can keep the dynamism across graph breaks since source names stay consistent. Additionally you can use this to mark ints as dynamic.
NB: I intentionally didn't complicate the interface by supporting specification of per dimension dynamism. There is virtue in keeping true to the standard way of representing sources (eg. L['x']). If we find in practice that we need more more fine grained control, we can explore further affordances at that time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147979
Approved by: https://github.com/Mingming-Ding
This PR essentially introduces two new APIs
* torch.compiler.save_cache_artifacts
* torch.compiler.load_cache_artifacts
which aim to create a mega cache experience where the user can start collecting cache artifacts, and later call the save API to fetch them. In the next attempt, the user can "hot load" the cache artifacts via the load function.
This bundling approach reduces the need to rely on porting individual files one by one, or relying on many network requests.
Note that these APIs CANNOT log to structured logging as these functions will be called before and after compilation, as opposed to during compilation. Due to this limitation, the API returns a struct that the user can log with.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143341
Approved by: https://github.com/jansel
We added an is_export flag under torch.compiler.is_exporting. This comes handy when we try to do some special logic in user-level and system-level (e.g. in upper of the stack).
In increasing-scope:
- `_is_fx_tracing` is set to True when we use under symbolic_trace or make_fx.
- `is_exporting` is set to True when we're doing strict or non-strict export, which internally has a step that calls make_fx and set _is_fx_tracing to be True.
- `is_compiling` is set to True when we're either doing strict, non-strict export or torch.compile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142425
Approved by: https://github.com/avikchaudhuri
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.
5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)
Example:
```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...
>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
... for i, item in enumerate(sequence):
... if item is x or item == x:
... return i
... raise ValueError("sequence.index(x): x not in sequence")
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.
5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)
Example:
```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...
>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
... for i, item in enumerate(sequence):
... if item is x or item == x:
... return i
... raise ValueError("sequence.index(x): x not in sequence")
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.
5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)
Example:
```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...
>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
... for i, item in enumerate(sequence):
... if item is x or item == x:
... return i
... raise ValueError("sequence.index(x): x not in sequence")
>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
We make the following changes:
- most of the time when someone uses allow_in_graph, they actually
wanted to make a custom op. We add a link to the custom ops landing
page and explain the differences between allow_in_graph and custom
ops.
- we warn people against using allow_in_graph footguns and document
them.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127117
Approved by: https://github.com/jansel, https://github.com/albanD
Summary: In non-strict mode of torch.export() we didn't set those `is_compiling()` to `True` which is needed by some models.
Test Plan: Unit tests and manual testing.
Differential Revision: D53624452
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119602
Approved by: https://github.com/suo
A less general version of this wrapper was used in the keynote on
`torch.compile(numpy)`. We expose a generic version of the wrapper
that works seamlessly with `torch.compile`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114610
Approved by: https://github.com/albanD