Commit Graph

69 Commits

Author SHA1 Message Date
Laith Sakka
43b2716e89 PYFMT lint grandfathered files 1 (#154261)
lint:
-  test/test_fake_tensor.py
-  test/test_flop_counter.py
- torch/_export/verifier.py

with same rules as other files, it was a night mare for me to update tests in one of the skipped files
with not being able to lint them locally like other files with lintrunner -a.
note that those file do have active dev and not old not touched files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154261
Approved by: https://github.com/angelayi, https://github.com/Skylion007
2025-05-25 17:36:14 +00:00
Sherlock Huang
81f60f3880 Expand allowed_getattr_types_for_subgm to torch.Tensor (#150867)
Summary:
att

regular weight has the type of torch.nn.parameter.Parameter
buffer and tensor constant has the type of torch.Tensor

both types are valid.

Test Plan: CI

Differential Revision: D72657275

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150867
Approved by: https://github.com/zhxchen17
2025-04-09 11:01:45 +00:00
Yiming Zhou
a3f9e04656 [export] Make aoti_call_delegate hop traceable (#148804)
Summary: The `aoti_call_delegate` hop now uses a stateless `original_gm` for tracing with fake tensors and the OSS AOTI Runner for running with real tensors

Differential Revision: D70738393

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148804
Approved by: https://github.com/SherlockNoMad
2025-04-03 20:44:31 +00:00
Tugsbayasgalan Manlaibaatar
6b1b95ad2a Support subclass constructor capturing in export (#147014)
Notable TODOs:
1. Need to implement AutogradHOP to get rid of subclasses before serializing
2. Need to implement mechanism to figure out what subclasses will be used in export when they are not expressed in the inputs

Differential Revision: [D69640673](https://our.internmc.facebook.com/intern/diff/D69640673)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147014
Approved by: https://github.com/bdhirsh
2025-03-16 18:19:19 +00:00
Tugsbayasgalan Manlaibaatar
ebd992724f Implement serializable getattr support for tensor subclasses (#145772)
builtins.getattr is not serializable, so we replace it with a custom op that has more refined schema.

Differential Revision: [D68899421](https://our.internmc.facebook.com/intern/diff/D68899421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145772
Approved by: https://github.com/bdhirsh
2025-02-11 19:05:14 +00:00
Sherlock Huang
cf2de4e230 Introduce aoti_call_delegate HOP (#145630)
Summary:
Previously, aoti compile node is represented as a kernel-less custom op in the exported program. The node was not eager runnable, which is a common practice for numerical validation during lowering.

I introduce a new HOP to address this.

The schema is following
```
aoti_call_delegate(lower_moduel: AOTInductorEPModule, original_gm: fx.GraphModule, weights: List[Tensor], inputs: List[Tensor])
```

There are a few problems exposed by HOP
- AOTI expects a FX graph with weights as getattr nodes, aka stateful graph. HOP expect graph_module arguments to be stateless. Export serializer also expect a stateless graph. Currently, to make AOTI happy, I am making `original_gm` stateful, and bypassing the serialization for `original_gm`.
- As a result, the HOP is not re-traceable, as functionalization on stateful graph module argument will fail.

Test Plan: buck2 test 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:cpu_lowering_utils_test

Reviewed By: zhxchen17

Differential Revision: D68359391

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145630
Approved by: https://github.com/zou3519
2025-01-31 04:57:36 +00:00
Colin Peppler
50f834f134 [export] allow bit shift builtin ops (#145802)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145802
Approved by: https://github.com/pianpwk
2025-01-29 03:05:48 +00:00
Aaron Orenstein
97d4d3c40a PEP585 update - torch/_export (#145138)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145138
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #145154
2025-01-19 18:48:35 +00:00
Tugsbayasgalan Manlaibaatar
c68c38c673 Support getattr for tensor subclasses in pre-dispatch export via patching tensor.getattr (#143946)
Previous discussion: https://github.com/pytorch/pytorch/pull/143671#issuecomment-2560112499 and https://github.com/pytorch/pytorch/pull/143671

Differential Revision: [D67693609](https://our.internmc.facebook.com/intern/diff/D67693609)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143946
Approved by: https://github.com/bdhirsh
2025-01-06 23:55:50 +00:00
bobrenjc93
d75ffccd0a Migrate from Tuple -> tuple in torch/_export (#144262)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144262
Approved by: https://github.com/avikchaudhuri
2025-01-06 22:20:26 +00:00
bhack
ae9cda0221 Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-12-05 17:33:33 +00:00
PyTorch MergeBot
6e61ff4fd3 Revert "Add truediv support in export serializer (#136364)"
This reverts commit 1df440dc4e.

Reverted https://github.com/pytorch/pytorch/pull/136364 on behalf of https://github.com/huydhn due to Sorry for reverting your change but its doc build failure is legit ([comment](https://github.com/pytorch/pytorch/pull/136364#issuecomment-2502620732))
2024-11-27 03:24:31 +00:00
bhack
1df440dc4e Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-11-27 00:31:47 +00:00
Gregory Comer
617b4538f1 Support symbolic builtin round in export (#139549)
Differential Revision: D65380866

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139549
Approved by: https://github.com/digantdesai, https://github.com/angelayi
2024-11-07 02:49:44 +00:00
Henry Tsang
350bc2a166 [export] Add support for symbool to make it usable for torch.cond (#138765)
# Why?

I want the following code to work.

minimal repro:
```
class M(torch.nn.Module):
    def forward(self, dilate_flag):
        return dilate_flag.item()

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()

ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```

error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program

second error will be handled by https://github.com/pytorch/pytorch/pull/138760

# Motivation

I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.

```
class M(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.dilate_flag = 0

    def forward(self, dilate_flag):
        self.dilate_flag = dilate_flag.item()

        def true_fn(dilate_flag):
            return dilate_flag.clone()

        def false_fn(dilate_flag):
            return dilate_flag.clone()

        torch.cond(
            self.dilate_flag,
            true_fn,
            false_fn,
            (dilate_flag,),
        )
        return self.dilate_flag

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()

for input in inputs:
    expected_output = model(*input)

    ep = torch.export.export(model, input, strict=False)
    path = torch._inductor.aot_compile(ep.module(), input)
    aot_model = torch._export.aot_load(path, device="cuda")
    actual_output = aot_model(*input)

    assert (
        expected_output == actual_output
    ), f"henry they are not equal {expected_output} != {actual_output}"
```

Differential Revision: D64867504

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
2024-11-04 23:31:49 +00:00
Tugsbayasgalan Manlaibaatar
e080c89bdc Make test_torchbind.py training IR compatible (#138658)
In this diff, i make test_torchbind.py tests to handle training IR. Today in the training IR, we don't see the effect token and HOP because this happens at the FunctionalTensorMode. Maybe in the future, we should move this logic up to the training IR so that writing passes etc on training Ir is safer. But for the migration purposes, i think it is ok for now.  I also fixed two bugs:
1. ep.module() doesn't register all aliased constants in the module.
2. When we retrace, we need to fakify the original Torchbind object.
3. We don't run any DCE on training IR so we need to add some more torch ops to verifier.

Differential Revision: [D64853530](https://our.internmc.facebook.com/intern/diff/D64853530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138658
Approved by: https://github.com/ydwu4, https://github.com/zhxchen17
2024-11-04 17:43:11 +00:00
Shangdi Yu
b2979f4382 Allow autocast in training ir export (#137287)
Summary: hardcode "val" field for autocast (similar to set_grad_enabled), to bypass the verifier check.

Test Plan: CI

Differential Revision: D63345767

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137287
Approved by: https://github.com/angelayi
2024-10-04 17:38:51 +00:00
Zhengxu Chen
a19a7524f6 [export] Make sure getitem replacement are synced with module call graph. (#134830)
Summary: When we are placing nodes in the graph, we should also replace the references in module_call_graph.

Test Plan:
buck2 run 'fbcode//mode/opt' torchrec/fb/ir/tests:test_serializer -- --filter-regex test_serialize_deserialize_vlea
buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_serialize_empty_value_vlea' --run-disabled

buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_deserialized_device_vle' --run-disabled

Differential Revision: D62014035

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134830
Approved by: https://github.com/angelayi
2024-08-30 16:47:05 +00:00
Angela Yi
29c4b4ea5a [executorch] Refactor delegation code (#132773)
Summary: Refactoring partitioner-based delegation to prepare for allowing buffer mutations in the delegate (following diff).

Test Plan: CI

Differential Revision: D60813405

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132773
Approved by: https://github.com/ydwu4, https://github.com/cccclai
2024-08-15 22:52:12 +00:00
Xuehai Pan
758a0a88a2 [BE][Easy] enable ruff rule PIE790: unnecessary pass statement (#133200)
This PR removes unnecessary `pass` statement. This is semanticly safe because the bytecode for the Python code does not change.

Note that if there is a docstring in the function, a empty function does not need a `pass` statement as placeholder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133200
Approved by: https://github.com/malfet, https://github.com/eqy, https://github.com/kit1980
2024-08-15 15:50:19 +00:00
Pian Pawakapan
a896fb1b36 check unsupported sympy functions for runtime asserts (#132457)
Some sympy Functions aren't supported by sympy_interp(); we can't turn them into FX nodes, so currently the runtime asserts CSE pass avoids CSE'ing on any expression containing a sympy Function. https://github.com/pytorch/pytorch/pull/132325 started tracking unsupported functions, so we switch the check to that to be more precise. We also check for and skip unsupported functions when adding asserts - previously we only did the check for CSE, and not adding new expressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132457
Approved by: https://github.com/avikchaudhuri
2024-08-03 10:17:25 +00:00
Zhengxu Chen
5484c86021 [export] Fully support extension op in serialization/deserialization. (#130851)
Summary: Finishing up the mechanism to "register" certain types of operators to a registry so that the serializer can handle them correctly. This is expected to be firstly used by executorch.

Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_export_with_extension_op_serialization

Differential Revision: D59825148

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130851
Approved by: https://github.com/angelayi
2024-07-18 16:47:53 +00:00
Zhengxu Chen
726a287271 [export] Expand verifier to be multiple on ExportedProgram (#130364)
Summary: This diff updates the ExportedProgram class in PyTorch to allow for multiple verifiers to be attached to it. This is done by adding a new field to the ExportedProgram schema called "verifiers" which is a list of strings representing the names of the verifiers to be attached to the program. The verifiers are loaded using the "load_verifier" function which is defined in the "torch._export.serde.serialize" module. The "exported_program.dialect" field is also deprecated in favor of the "verifiers" field.

Test Plan: CI

Differential Revision: D59408546

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130364
Approved by: https://github.com/angelayi, https://github.com/ydwu4
2024-07-11 20:34:49 +00:00
Tugsbayasgalan Manlaibaatar
ec284d3a74 Prototype for export_for_training (#129092)
This PR implements export_for_training where the IR is not-functional, pre-dispatch aten IR. The general strategy:
1. Call dynamo to get torch IR
2. Lift param/buffer
3. call make_fx

TODO:
1. run_decomp doesn't work
2. not-strict is not supported

Differential Revision: [D59069087](https://our.internmc.facebook.com/intern/diff/D59069087)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129092
Approved by: https://github.com/zhxchen17
ghstack dependencies: #128077
2024-06-27 18:27:11 +00:00
Edward Z. Yang
3964a3ec73 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/

It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-09 06:20:25 +00:00
Aaron Orenstein
ea614fb2b1 Flip default value for mypy disallow_untyped_defs [2/11] (#127839)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127839
Approved by: https://github.com/oulgen
2024-06-08 18:23:08 +00:00
Jiashen Cao
10d2373abd Add a registry for GraphModuleSerializer (#126550)
This PR adds a registration function and a global registry for GraphModuleSerializer. After this PR, custom serialization methods can be done through registration instead of subclassing for ease of maintenance.

## Changes
- Add a test case where it injects custom op to test serialization.
- Add custom op handler
- Change allowed op for verifier
Co-authored-by: Zhengxu Chen <zhxchen17@outlook.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126550
Approved by: https://github.com/zhxchen17
2024-05-29 03:12:48 +00:00
angelayi
ed457c7dbe [export] Add torch_fn (#122693)
This PR adds a new metadata, `torch_fn` which is meant to replace `source_fn_stack` as `source_fn_stack` is not entirely well defined between strict/nonstrict. Previous discussion [here](https://docs.google.com/document/d/1sPmmsmh6rZFWH03QBOe49MaXrQkP8SxoG8AOMb-pFk4/edit#heading=h.anmx9qknhvm).

`torch_fn` represents the torch function that a particular aten operator came from. For example, `torch.nn.Linear` goes down to the `torch.nn.functional.linear` at the `__torch_function__` layer, and then `aten.t/aten.addmm` in the `__torch_dispatch__` layer. So the nodes `aten.t/aten.addmm` will now have the `torch_fn` metadata containing the `torch.nn.functional.linear`.

The `torch_fn` metadata is a tuple of 2 strings: a unique identifier for each torch function call, and the actual torch function `f"{fn.__class__}.{fn.__name__}"`. The purpose of the first value is to distinguish between 2 consecutive calls to the same function. For example, if we had 2 calls to `torch.nn.Linear`, the nodes and corresponding metadata would look something like:
```
aten.t - ("linear_1", "builtin_function_or_method.linear"),
aten.addmm - ("linear_1", "builtin_function_or_method.linear"),
aten.t - ("linear_2", "builtin_function_or_method.linear"),
aten.addmm - ("linear_2", "builtin_function_or_method.linear"),
```

Higher order ops -- currently we can get the torch_fn metadata for nodes within the HOO's subgraph, but after retracing, this becomes the `(cond, higher_order_op.cond)` :( This is because `fx_traceback.set_current_meta` points to the cond node in the toplevel graph, rather than the original node in the subgraph. I think this is because `fx.Interpreter` does not go into the cond subgraphs. (will discuss with Yidi more ab this)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122693
Approved by: https://github.com/tugsbayasgalan
2024-03-30 06:47:15 +00:00
Pian Pawakapan
3f99306452 [export] Remove from_export flag (#122500)
Summary: The flag from_export was incorrectly included in a previous diff (https://www.internalfb.com/diff/D54314379) - it was intended for helping with ExportedProgram verification, but was no longer needed in the final implementation.

Test Plan: Changes no functionality, test/export already covers everything

Differential Revision: D55205857

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122500
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2024-03-22 22:55:14 +00:00
Zhengxu Chen
f8565c4a28 [sigmoid] Clean up serialization API. (#122102)
Summary: Entirely remove the old serializer code to avoid further confusion and code bloat.

Test Plan: CI

Reviewed By: SherlockNoMad

Differential Revision: D54857118

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122102
Approved by: https://github.com/tugsbayasgalan
2024-03-20 03:45:36 +00:00
Pian Pawakapan
3bd38928ba [export] Improve consistency for nn_module_stack metadata, add checks to _trace.py (#120661)
We would like to improve consistency for nn_module_stack metadata in torch.export.

This PR ensures that all tests in test/export/test_export.py has the following constraints:
- Remove nn_module_stack for all placeholder & output nodes, for all modules and submodules
- Ensure nn_module_stack is present for all other node types for the top-level module (there is still an issue with torch.cond submodules having empty fields)
- Add these checks to _export() in _trace.py (we would add this in the Verifier, but downstream apps construct ExportedPrograms separate from _export(), and metadata may not be maintained there)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120661
Approved by: https://github.com/avikchaudhuri
2024-03-16 21:44:52 +00:00
angelayi
ef25d83a62 [export] Add serialization support for tokens (#121552)
Differential Revision: [D54906766](https://our.internmc.facebook.com/intern/diff/D54906766)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121552
Approved by: https://github.com/zhxchen17
2024-03-15 16:15:11 +00:00
angelayi
e8836759d0 [export] Add effect token to export (#121424)
Following the creation of effect tokens (https://github.com/pytorch/pytorch/pull/120296), we want to now add support for these tokens in export because the calling/returning convention has changed. The inputs are now `(tokens, params, buffers, constants, user_inputs)` and the outputs are `(tokens, buffer_mutations, user_mutations, user_outputs)`. The graph looks something like:
```
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %attr : [num_users=2] = placeholder[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %with_effects : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%arg0_1, _TorchScriptTesting.takes_foo.default, %attr, %arg1_1), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 0), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 1), kwargs = {})
    %with_effects_1 : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%getitem, _TorchScriptTesting.takes_foo.default, %attr, %getitem_1), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 0), kwargs = {})
    %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %getitem_3), kwargs = {})
    return (getitem_2, add)
```

During unlifting, we will first remove the tokens and with_effect calls using the `remove_effect_tokens` pass. (cc @SherlockNoMad on the pass to remove tokens). This is so that this won't change the calling conventions when retracing. The graph after unlifting looks something like:
```
graph():
    %attr_1 : [num_users=2] = get_attr[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %takes_foo_default_1 : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %arg1_1), kwargs = {})
    %takes_foo_default : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %takes_foo_default_1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %takes_foo_default), kwargs = {})
    return (add,)
```

Serialization support will be added in a followup.
Note: tokens only affect custom ops that take in ScriptObjects, not ScriptObject methods yet.

Differential Revision: [D54639390](https://our.internmc.facebook.com/intern/diff/D54639390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121424
Approved by: https://github.com/tugsbayasgalan
2024-03-09 02:43:26 +00:00
Michael Suo
bf4e171539 [export] support non-persistent buffers (#118969)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1817

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

As a side effect, this diff tightened up quite a few sloppy  behaviors around state dict handling:
- Tensor attributes were getting promoted to be buffers—bad!
- Tracing through a module not in the children of the root module would add its parameters/buffers to the state dict—bad!

This behavior is unlikely to show up in user code since the model would be totally broken, but did show up in a bunch of tests.

#buildmore

Test Plan:
unit tests
sandcastle

Differential Revision: D53340041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118969
Approved by: https://github.com/guangy10, https://github.com/huydhn, https://github.com/titaiwangms
2024-02-02 19:16:08 +00:00
PyTorch MergeBot
221747507d Revert "[export] support non-persistent buffers (#118612) (#118722)"
This reverts commit a43c28368c.

Reverted https://github.com/pytorch/pytorch/pull/118722 on behalf of https://github.com/atalman due to broke linux-jammy-py3-clang12-executorch ([comment](https://github.com/pytorch/pytorch/pull/118722#issuecomment-1921484565))
2024-02-01 14:39:29 +00:00
Michael Suo
a43c28368c [export] support non-persistent buffers (#118612) (#118722)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1769

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

Test Plan: added a unit test

Differential Revision: D53253905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118722
Approved by: https://github.com/SherlockNoMad, https://github.com/angelayi
2024-02-01 00:36:09 +00:00
suo
d0627cc2af [export] do not rewrite state dict when unlifting (#118611)
This is Very Bad; changing state dict keys violates one of the key contracts we have, which is "do not mess with the state dict".

Change unlift to use a similar `_assign_attr` approach that fx.GraphModule and unflatten do.

Also took the opportunity to improve the interface of `_assign_attr` to be more general.

Differential Revision: [D53139277](https://our.internmc.facebook.com/intern/diff/D53139277/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118611
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608, #118609, #118610
2024-01-30 19:14:19 +00:00
Zhengxu Chen
eb9905be5d [export] Remove the branch for skipping verifier. (#118139)
Summary:
We used to skip verifier when the signature object is not the "correct" one (usually from some deprecated frontend). This was very useful when we wanted to pay a small cost to enable verifier path to be called everywhere for torch export.

Now I believe no tests are relying on this behavior so we should remove this weird branch.

Test Plan: CI

Differential Revision: D53024506

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118139
Approved by: https://github.com/suo
2024-01-30 02:58:03 +00:00
Sherlock Huang
6596a3f23d [Export] Remove ScriptObjectMeta (#118241)
Summary: As title. Use CustomObjArgument as ScriptObjectMeta

Test Plan: CIs

Reviewed By: zhxchen17

Differential Revision: D53062230

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118241
Approved by: https://github.com/zhxchen17
2024-01-26 00:37:19 +00:00
Angela Yi
a93940b5db [export] Allow constant outputs + None input/outputs (#117894)
Added support for constant outputs. We will just embed the constant directly into the output, like `return (x, 1)`.
Also adds support for None input/outputs. For None inputs we address it the same way we do to constants, which is that a placeholder with no users will be inserted into the graph, and the None will be embedded into whatever operator is using the None. For None outputs, we will also address the same way we do constants, which is that we embed it into the output, like `return (x, None)`.

Differential Revision: D52881070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117894
Approved by: https://github.com/zhxchen17
2024-01-25 23:37:34 +00:00
Angela Yi
92d718aed1 [export] Add lifted constant obj to input (#116985)
Test Plan: wip

Differential Revision: D52556070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116985
Approved by: https://github.com/suo
2024-01-18 22:10:53 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
28be47c267 [RELAND][export] Exempt autograd ops for predispatch export (#117448)
Summary: Reland of https://github.com/pytorch/pytorch/pull/116527/files

Test Plan: CI

Differential Revision: D52675324

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117448
Approved by: https://github.com/ydwu4
2024-01-16 19:32:15 +00:00
PyTorch MergeBot
77ecb3d725 Revert "[export] Exempt autograd ops for predispatch export (#116527)"
This reverts commit af2ded23eb.

Reverted https://github.com/pytorch/pytorch/pull/116527 on behalf of https://github.com/tugsbayasgalan due to Need to revert this to revert the bottom diff ([comment](https://github.com/pytorch/pytorch/pull/116527#issuecomment-1884592658))
2024-01-10 10:38:27 +00:00
Zhengxu Chen
9519c8afd4 [export] Remove hacks for passing pinned version test. (#116871)
Summary: nature will heal itself.

Test Plan: CI

Reviewed By: angelayi

Differential Revision: D52566227

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116871
Approved by: https://github.com/angelayi
2024-01-06 18:09:27 +00:00
chundian
af2ded23eb [export] Exempt autograd ops for predispatch export (#116527)
Summary:
We intend to preserve autograd ops for predispatch export. Therefore, we
need to exempt the autograd ops in some places, e.g. verifier and
proxy_tensor.py.

Test Plan:
python test/export/test_export.py -k test_predispatch_export_with_autograd_op
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116527
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #116339
2024-01-05 22:28:57 +00:00
Zhengxu Chen
43fb1b671c [export] Improve verifier to not specialize on dialect. (#116705)
Summary:
Currently we have a very ugly specialization on edge dialect in verifier like the following:
```
 # TODO Remove this branch.
            if ep.dialect == "EDGE":  # !!! Don't change this allowlist. !!!
                pass
            else:
                raise e
```
In this diff we do some additional work to make signature checking also work in exir. We decouple the transformation stack in torch export and exir so that different layers of the stack can evolve in their own fashion and the team can divide and conquer them seperately.

Test Plan: CI

Differential Revision: D52499225

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116705
Approved by: https://github.com/tugsbayasgalan
2024-01-04 17:17:23 +00:00
angelayi
e43d33f4f7 [export] Support torch.sym* ops (#115854)
Fixes https://github.com/pytorch/pytorch/issues/108830 and https://github.com/pytorch/executorch/issues/1379#issuecomment-1853322866

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115854
Approved by: https://github.com/zhxchen17
2023-12-18 17:48:47 +00:00
PyTorch MergeBot
50c9665f92 Revert "[export] Support torch.sym* ops (#115854)"
This reverts commit 347cb91946.

Reverted https://github.com/pytorch/pytorch/pull/115854 on behalf of https://github.com/atalman due to OSSCI oncall, broke multple jobs ([comment](https://github.com/pytorch/pytorch/pull/115854#issuecomment-1858486796))
2023-12-15 21:07:52 +00:00
angelayi
347cb91946 [export] Support torch.sym* ops (#115854)
Fixes https://github.com/pytorch/pytorch/issues/108830 and https://github.com/pytorch/executorch/issues/1379#issuecomment-1853322866

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115854
Approved by: https://github.com/zhxchen17
2023-12-15 20:08:04 +00:00
Jacob Szwejbka
304ea761f5 [executorch][be] update test_emit to use export (#114294)
Summary: exir.capture is deprecated. Switch to blessed path

Test Plan: fbsource/fbcode/executorch/exir/emit/test (c40a7a0d2)]$ buck test :

Differential Revision: D51503120

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114294
Approved by: https://github.com/zhxchen17
2023-11-28 01:25:46 +00:00