Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29653
I didn't remove is_variable from Tensor for BC reasons, but I did
remove as many uses as I could from the codebase.
at::impl::variable_excluded_from_dispatch got moved to TensorBody.h
so that it's more widely accessible.
This diff is NOT semantics preserving. Here are the major differences:
- In a number of native operator implementations, we tested that arguments
are not variable. I replaced these with asserts that variable is
excluded from dispatch. I actually don't think these asserts are really
necessary now (they should certainly be true, but it's hard to get
it wrong), but I've kept them for old time's sake. At least, they'll detect
if you call these functions before you've processed variable (indicating
a bug in your kernel.)
- There are a number of places where we do a per-tensor test for being a
variable, for better error reporting when someone commits Tensor/Variable
confusion. Although these tests are substantively the same as the
tests above, in these cases I decided to *delete* the test entirely.
The reasoning is that in these cases, we didn't really care about
dispatch (also, see above; I'm not too sure we really need the dispatch
asserts), we cared about Tensor/Variable confusion. Since Tensor/Variable
confusion is impossible now, we don't need the tests. One of the key
factors which pushed me one way or another was whether or not a function
was doing per-tensor validation; if I kept the assert in such functions,
I'd repeatedly access the TLS. Even if we want to bring back the asserts,
they would have to go somewhere else.
Another similar idiom is the number of places we do !x.defined() ||
x.is_variable(); I treated this equivalently.
- nuclear_norm's computation of compute_uv is a bit weird, but I think
it's OK to just delete the is_variable case (I *suspect* that it is
always the case that self.is_variable(), but it doesn't really matter.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496168
Pulled By: ezyang
fbshipit-source-id: 5a1ded931e0c10a6b758ba64a8380d34110e0c3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26502
Create type ids at compile time instead of incrementing a counter at runtime. This is done by computing a compile time crc64 on the type name. We couldn't do this before, because we still used GCC4 and that compiler didn't support the use of `__PRETTY_FUNCTION__` in a constexpr context. However, since GCC5 this is possible and we can use this trick.
This does not change the semantics of preallocated type ids. I actually think we don't need to preallocate anymore, but I split the removal of preallocation into a separate diff to be able to test it separately.
ghstack-source-id: 91896920
Test Plan: unit tests
Differential Revision: D17488861
fbshipit-source-id: ce7b059d7c8686b69cb091a4a8beaf4b96391343
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27086
This is a major source of merge conflicts, and AFAICT isn't necessary anymore (it may have been necessary for some mobile build stuff in the past).
This is a commandeer of #25031
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D17687345
Pulled By: ezyang
fbshipit-source-id: bf6131af835ed1f9e3c10699c81d4454a240445f
Summary:
As part of the Variable/Tensor merge, we want to be able to pass Variables into Caffe2 without doing extra shallow copy, to improve performance and also allow for in-place mutations in Caffe2 ops. There are a few approaches outlined in https://github.com/pytorch/pytorch/pull/22418, and this PR is the chosen approach.
Specifically, we can have the assumption that we won't be connecting autograd to C2 gradients at any point (as it's too tricky and not that useful). Therefore, we can pass Variable into Caffe2 ops by requiring that all Variables in Caffe2 don't require grad. For code paths in Caffe2 that might potentially track gradients (e.g. `ScriptModuleOp` and `call_caffe2_op_from_c10`), we use the `torch::NoGradGuard` to make sure gradients are not tracked.
This supersedes https://github.com/pytorch/pytorch/pull/22418.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22473
Differential Revision: D16099042
Pulled By: yf225
fbshipit-source-id: 57efc3c7cfb3048d9abe90e63759acc14ebd2972
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20439
This is the QTensorProto workflow for multi group quantization in C2 side.
No DNNLOWP Tensor related thing is included in this pr, so once we finished glow side, we should be able to test this pr using resnet50.
Reviewed By: yinghai
Differential Revision: D15096919
fbshipit-source-id: 741eecd59eb79d24d9fe2b035f6246d42422d25c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18531
Currently we use C10_LOG_EVERY_MS to log the data type change, but it pollutes the log of some service,
we would like to change it to C10_LOG_FIRST_N to prevent that.
Reviewed By: dzhulgakov
Differential Revision: D14647704
fbshipit-source-id: b84e4002bd4aa94d616133cd1049c3d4ab05386e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16514
Original commit changeset: dc371697f14b
Relanding https://github.com/pytorch/pytorch/pull/15860 - the problem was that layer_norm was using at::empty which is not yet on mobile
Reviewed By: ezyang
Differential Revision: D13861480
fbshipit-source-id: e2116da32bc117175c96b9151b1beba9b31eff36
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15860
Few changes (which are harder to split in separate diffs, so together):
- make conversion explicit (as they can throw to avoid surprises)
- fix tensor legacy dispatch not initialized when tensor is created on C2 side
- add a bunch of invariants to enforce
Reviewed By: ezyang
Differential Revision: D13596031
fbshipit-source-id: d20b601e06ba47aeff2f6e8e15769840e2d46108
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16294
In `ReinitializeTensor`, we compare `tensor->GetDevice()` and `options.device()`, but in the callsite, we actually just provide an option with `device_type`, which means the `device_id` will always be default(-1) for `options`, but for tensor, although it is passed a `device` with default `device_id`, when we allocate the data, the `device` of the `tensor` is the `device` of `Storage`, which is the `device` of underlying `DataPtr`, which is the same as the `device` of the `Context` of the operator, which has a non-default `device_id`.
Therefore everytime we do `ReinitializeTensor`, we'll find the `device` does not match, and after the `ReinitializeTensor` call, the `device` still does not match. That's why everytime we'll allocate a new Tensor and cause perf regressions for ops that uses `ReinitializeTensor` on multiple GPUs.
Reviewed By: BIT-silence
Differential Revision: D13795635
fbshipit-source-id: 24d6afa1a0196a32eb0134ee08b4280244cdb0c3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14269
Removes reference to Context proper and instead adds a bool argument for async copy (the same as `copy_`)
For CopyFrom - I haven't tweaked all callsites yet. Instead I rely on a terrible hack that pointer to context is implicitly converted to bool when passed, haha :) It's not a good code and I propose to fix it in a follow up diff (maybe using clangr tooling).
Reviewed By: ezyang
Differential Revision: D13117981
fbshipit-source-id: 7cb1dc2ba6a4c50ac26614f45ab8318ea96e3138
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13629
Previously we have a Tensor which has a initialized storage(therefore a known device_type) and
then we'll call CopyFrom on it to initialize the sizes and data.
We want to eliminate partially initialized Tensor by replacing the pattern of calling CopyFrom with a partially initialized Tensor with either splitting that to undefined Tensor + initialization API(1)(3) or combine all the initialization in the same step(2).
1. member variable initialization + CopyFrom
Previously we have a tensor that is initialized with device_type, and then use CopyFrom to populate the content, now we remove the partial initialization by make the original member variable an undefined Tensor and use ReinitializeFrom to copy from another Tensor.
2. Output + CopyFrom
Previously, we first get a tensor with device_type, and then CopyFrom another Tensor,
We changed it two combining these two operations into OperatorBase::OutputTensor.
3. Output + custom functions
Example can be found in TransformGPU function.
In this case we move the part that initializes the tensor outside of the function, and do that explicitly outside so that we could reuse the Output functions to make a fully initialized Tensor.
Note that to keep the original semantics, both of the APIs has a caching effect based on device_type, which means we only create a Tensor object when device_type does not match or the Tensor is undefined, otherwise, we will reuse the original Tensor object.
Reviewed By: dzhulgakov
Differential Revision: D12848855
fbshipit-source-id: 37bb4ddc1698ebea533b73006eeb1218faa8ddf8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12768
Note: DefaultTensorOptions no longer fits in 64-bits.
I kept functions that take ScalarType as input to minimize changes for now.
Reviewed By: ezyang
Differential Revision: D10419671
fbshipit-source-id: 9cc8c5982fde9ff243e03d55c0c52c2aa2c7efd8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12407
We want to use tensor factory to refactor the caffe2's old way of initialize Tensor by Resize and mutable_data
in order to eliminate uninitialized Tensor.
Previously when we want to create a Tensor in caffe2, we'll do the following
```
Tensor x(CPU); // device type provided
x.Resize({1, 2, 3}); // size provided
x.mutable_data<float>(); // data type provided and memory allocated
```
This leaves Tensor in not fully initialized state during the process, to eliminate this, we
want to provide all the needed information in the begining. ATen already has its TensorFactories: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp, and there is a TensorOption, we want to adopt the same interface to ease future refactoring.
In the callsite, we used to have `Output(i)` that returns a `Blob` that contains an uninitialized `Tensor` and we'll call Resize and mutable_data afterwards to provide dimension and data type,
```
// uninitialized tensor
auto* Y = Output(0);
// set dimensions
Y->Resize({1, 2, 3});
// actually allocate the data
auto* data = Y->mutable_data<float>();
// After this step, Tensor is fully initialized.
```
We want to change it to the following:
```
// provide dimensions and TensorOptions which include device type and data type.
// This will set all the information of Tensor properly and also allocate memory.
auto* Y = Output(0, {1, 2, 3}, at::device({context_.device_type()}).template dtype<T>());
// Tensor is fully initialized after this step
// following `mutable_data` call won't allocate memory.
auto* data = Y->mutable_data<float>();
```
microbenchmarks
```
============================================================================
caffe2/caffe2/fb/benchmarks/core_overhead_benchmark.ccrelative time/iter iters/s
============================================================================
OperatorNewOutputTensorAPI 3.27us 306.05K
OperatorOldOutputTensorAPI 3.55us 281.54K
============================================================================
```
Reviewed By: ezyang
Differential Revision: D10207890
fbshipit-source-id: f54ddacaa057b7c6bc7d5a8290171f35e9e40e29
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12304
- make ExtractDeviceOption to be a free function.
- Add a Strorage(at::Device) constructor in order to preserve the device_id.
Reviewed By: dzhulgakov
Differential Revision: D10069839
fbshipit-source-id: a5f3994a39bdf1b7503b39bb42c228e438b52bfa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12180
I had to fix a lot of call sites, because a lot of places assume that
you can actually get a const vector&, and if the internal representation
of sizes in a tensor is NOT a vector, it's not possible to fulfill
this API contract.
Framework changes:
- I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to
sizes() now.
- De-templatized SetDims; now it is an explicit list of ArrayRef and
variadic overloads. This makes implicit conversions work again,
so I don't need to explicitly list the std::vector cases too.
- As a knock-on effect, this causes Reset() to accept at::IntList as well as
const std::vector<int64_t>&
- Edited variadic overloads of SetDims to all forward to the underlying
arbitrary-dim implementation, reducing code duplication. (It's probably
marginally less efficient in the new world.)
- Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList
- Make MKLTensor accept ArrayRef along with vector in constructor and
Reset (unfortunately, no implicit conversions here, since it's templated on
index type.)
- There are a few other places, like cudnn, where I changed functions
that previously took const std::vector<int64_t>& to take at::IntList
instead.
Classification of call site changes:
- 'const std::vector<int64_t>& x_dims = x.dims()' ==>
'at::IntList x_dims = x.dims()'
- 'std::vector<int64_t> x_dims = x.dims()' ==>
'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!)
Usually this is because we're about to mutably modify the vector
to compute some new dimension. However, it also very commonly occurs in the
form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators.
- Instead of constructing std::vector<int64_t>{blah, blah}, construct an
at::IntList directly
ArrayRef changes:
- cbegin()/cend() iterators, they operate the same aas begin()/end() because
everything on ArrayRef is const.
- Moved operator<< into ArrayRef.h, so that it's always available when
working with ArrayRef. I also templated it, so it now works on an
ArrayRef of any type.
- Add operator== overload for ArrayRef, and also add variants to permit
comparison of ArrayRef with std::vector, a very common operation.
(The non-templated version of operator== can get these automatically
via implicit conversion, but with templates C++ refuses to do
any explicit conversions.)
I'm planning to audit all dims() call sites to make sure they don't
expect 'auto x = t.dims()' to give you an x whose lifetime can validly
outlive the tensor.
I opted not to do a dims() to sizes() rename, because dims() also matches
the protobufs accessor. Bad news!
Reviewed By: jerryzh168
Differential Revision: D10111759
fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11597
We should always CHECK pointers which we plan to dereference
if they are inputs to the function. Nobody knows how the function will
be called in the future.
Reviewed By: yinghai
Differential Revision: D9800002
fbshipit-source-id: 7fd05f4717f2256d1b09a9e75475b12de6685b03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11642
This is just a preparatory change to help with future
refactoring:
- I want to reduce the number of includes that tensor_impl.h
depends on, but
- I need to keep tensor.h providing all Caffe2 headers, because
users may be relying on tensor.h transitively providing those
headers.
Introducing a level of indirection lets me do both at the same time.
Reviewed By: jerryzh168
Differential Revision: D9810823
fbshipit-source-id: 8dfaac4b8768051a22898be8fcaf787ecc57eb13
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11587
To help debug the issue in T33295362, we add some checks in the function.
Possible crashing site in `GetTensorInfo`
1. tc is nullptr, which is checked.
2. tc->capacity_nbytes() hits nullptr, this is unlikely because storage is not a pointer and compute of capacity_nbytes doesn't involve pointers. It's numel * itermsize().
3. tc->ExtractDeviceOption hits nullpt. One possibility raw_data() is nullptr because tc->ExtractDeviceOption will use that. This is checked.
4. Tensor itself which is not a reference. This is also checked.
Reviewed By: salexspb
Differential Revision: D9793484
fbshipit-source-id: 3fc72746fc310a23ae45553bbe0d269a4b9edb72
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10163
- Remove dependency on caffe2/core/common.h for ATen/core/typeid.h
Unfortunately, Windows seems to rely on typeid.h including this
header, so it is still included from the forwarding header
caffe2/core/typeid.h
- Deduplicate Demangle/DemangleType with their ATen equivalents
Reviewed By: smessmer
Differential Revision: D9132432
fbshipit-source-id: 21f2c89e58ca1e795f1b2caa316361b729a5231b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10217
It's only used in debug printing and is not that reliable anyway. If we want to implement it later - we should do it proper accounting for shared storages.
Reviewed By: jerryzh168
Differential Revision: D9155685
fbshipit-source-id: 48320d41a0c4155645f3ba622ef88730a4567895
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: ezyang, houseroad
Differential Revision: D9024330
fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: xw285cornell
Differential Revision: D8121878
fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
* Fix some signed/unsigned mismatches
* Skip unused result warning
* Explict fallthrough for murmur hash
* Enable aligned new support to eliminate warning
* Switch to int instead of unsigned in some cases