tensorA.data = tensorB will call shallow_copy_from function to copy tensorB metadata and storage to tensorA metadata and storage. If tensorB extra_meta_ is nullptr,then tensorA extra_meta_ still keep in tensorA. This will contaminate new meta data in tensorA.
@ezyang @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127616
Approved by: https://github.com/ezyang
Currently whenever the sizes or strides are modified for a `TensorImpl` we
eagerly recompute the numel and memory format flags. This is fine for static
shapes as it's all fast C++ code, but for symbolic shapes it runs slow python code.
This instead changes the `SymbolicShapeMeta` object to compute the derived
quantities lazily at the first request. This has the added benefit that we can
now pass assumptions in `empty_tensor_restride` which remove the need to compute
some contiguity flags at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112785
Approved by: https://github.com/ezyang
ghstack dependencies: #112689, #112890
This should be the last of the "it used to work with static shapes but
it doesn't work with dynamic shapes" hard errors. Now we will just
specialize if you hit it from C++.
The strategy here is a bit clever. We shunt the size() call to Python
binding if an error would have occurred. Importantly, we already have
logic to make sure the newly allocated ints stay live for the duration
of the ArrayRef access.
storage_offset is intentionally omitted because there are some problems
with it. I will fix them next.
This should let us get rid of the aotautograd_static test configuration.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111935
Approved by: https://github.com/zou3519
In cudagraph trees, we invalidate tensors at some point and drop their storage. Then, when they are accessed with .data_ptr(), a custom error message is thrown. Previously, this invalidation didn't also make untyped_storage()/storage() error which could result in a segfault.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109750
Approved by: https://github.com/zou3519
Unlike TORCH_CHECK, these always show C++ stacktrace on error. Put it
on errors where you frequently seem to need this information.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109373
Approved by: https://github.com/bdhirsh
ghstack dependencies: #109372
This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>
This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
The strategy is that we will heap allocate a LargeNegativeIntSymNodeImpl whenever we have a large negative int, so that we can keep the old `is_symbolic` test (now called `is_heap_allocated`) on SymInt. Whenever we need to do something with these ints, though, we convert them back into a plain `int64_t` (and then, e.g., wrap it in whatever user specificed SymNodeImpl they need.) We cannot wrap directly in the user specified SymNodeImpl as we generally do not know what the "tracing context" is from C++. We expect large negative ints to be rare, so we don't apply optimizations like singleton-ifying INT_MIN. Here's the order to review:
* c10/core/SymInt.h and cpp
* `is_symbolic` renamed to `is_heap_allocated` as I needed to audit all use sites: the old `is_symbolic` test would return true for large negative int, but it would be wrong to then try to dispatch on the LargeNegativeIntSymNodeImpl which supports very few operations. In this file, I had to update expect_int,
* If you pass in a large negative integer, we instead heap allocate it in `promote_to_negative`. The function is written in a funny way to keep compact constructor code for SymInt (the heap allocation happens out of line)
* clone is now moved out-of-line
* New method maybe_as_int which will give you a constant int if it is possible, either because it's stored inline or in LargeNegativeIntSymNodeImpl. This is the preferred replacement for previous use of is_symbolic() and then as_int_unchecked().
* Rename toSymNodeImpl to toSymNode, which is more correct (since it returns a SymNode)
* Complete rewrite of `normalize_symints.cpp` to use new `maybe_as_int`. Cannot easily use the old code structure, so it's now done doing a macro and typing out each case manually (it's actually not that bad.)
* Reimplementations of all the unary operators by hand to use `maybe_as_int`, relatively simple.
* c10/core/LargeNegativeIntSymNodeImpl.h - Just stores a int64_t value, but it has to be big and negative. Most methods are not implemented, since we will rewrap the large negative int in the real SymNodeImpl subclass before doing operations with it
* The rest of the files are just rewriting code to use `maybe_as_int`. There is a nontrivial comment in c10/core/SymIntArrayRef.h
Very minor test adjustment in c10/test/core/SymInt_test.cpp . Plan to exercise this properly in next PR.
Companion XLA PR: https://github.com/pytorch/xla/pull/4882
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99157
Approved by: https://github.com/albanD
…eMeta
This modularizes ExtraMeta to bring down its creation cost when it is needed for other functions than syn shape handling.
Change-Id: Ife59b201b0c4fd75090fe8be5171a6dd73a10d10
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98399
Approved by: https://github.com/ezyang
This PR removes the unnecessary == 0 guard when constructing empty tensors, by ensuring that when we create a contiguous tensor we go directly to the C++ torch.empty implementation (instead of indirecting through empty_strided), where we can bypass doing zero tests when computing the size of the storage. This probably also speeds up trace time.
When I did this, I found out that `empty_tensor_restride_symint` was flagrantly wrong (we had never exercised it before because we redirected to `empty_strided` in PrimTorch decomp, which doesn't hit this codepath.) The bugs:
* Stride computation was wrong (only `last_idx` was ever written to)
* Using set_sizes_and_strides with `sym_sizes` input doesn't work, because there is some sort of ordering problem where `clone_symvec` isn't safe when you clone a vector into itself. Probably should fix this.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94512
Approved by: https://github.com/ngimel
The basic idea behind this PR is that we want to continue using the guarding implementations of contiguity tests, if all of the elements are backend (aka, have hints). If they don't have hints, we'll have to do something slower (use the non-short circuiting, non guarding implementations of contiguity), but most of the time you aren't dealing with unbacked SymInts.
So this PR has three parts.
1. We expose `has_hint` on `SymNode`. This allows us to query whether or not a SymInt is backed or not from C++. Fairly self explanatory. Will require LTC/XLA updates; but for backends that don't support unbacked SymInts you can just always return true.
2. We update `compute_non_overlapping_and_dense` to test if the inputs are hinted. If they are all hinted, we use the conventional C++ implementation. Otherwise we call into Python. The Python case is not heavily tested right now because I haven't gotten all of the pieces for unbacked SymInts working yet. Coming soon.
3. We add stubs for all of the other contiguity tests. The intention is to apply the same treatment to them as well, but this is not wired up yet for safety reasons.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94431
Approved by: https://github.com/voznesenskym
This changes TensorImpl to store SymBool instead of bool. However, it doesn't actually compute these quantities symbolically (outside of some top level disjunctions.) The purpose of this PR is to make it easier to diagnose performance problems in the next PR, as after this change we can switch to guardless implementations without modifying TensorImpl.h
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92229
Approved by: https://github.com/Skylion007, https://github.com/albanD