Commit Graph

1944 Commits

Author SHA1 Message Date
Junjie Bai
84427d26db Add aten_op to caffe2 onnx (python) backend
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10579

Reviewed By: houseroad

Differential Revision: D9357837

fbshipit-source-id: 2cc6fedbaf088df7e11b52a91dfe3b8f0d7fd599
2018-08-16 00:39:30 -07:00
Junjie Bai
76da0b34c2 Remove an unused variable found by linter
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10578

Differential Revision: D9357880

Pulled By: bddppq

fbshipit-source-id: 6b56c2dbd02258124b5a4656cdf44d14a59e1b71
2018-08-16 00:25:44 -07:00
Xiaomeng Yang
87cac4c2f1 Update Im2Col related to make preparation for group conv in NHWC order. (#10439)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10439

Update Im2Col related to make preparation for group conv in NHWC order.

Reviewed By: houseroad

Differential Revision: D9285344

fbshipit-source-id: 1377b0243acb880d2ad9cf73084529a787dcb97d
2018-08-15 17:10:24 -07:00
Yiming Wu
579962f2a8 reroute tensor feature in core.Net and generate one net feature in model_helper (#10528)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10528

adding 2 features to core and model_helper

- reroute_tensor which supports op insertion on net level
- model_helper complete net and cut net used for full graph analysis

Differential Revision: D9330345

fbshipit-source-id: 56341d3f500e72069ee306e20266c8590ae7985a
2018-08-15 16:40:15 -07:00
Eli Amesefe
c5b1aa93ee Export uint8 tensors as byte string in mobile_exporter and add GivenTensorByteStringToUInt8FillOp (#10385)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10385

Pull Request resolved: https://github.com/pytorch/pytorch/pull/10354

Pull Request resolved: https://github.com/pytorch/pytorch/pull/10316

Because Protobuf encodes uint8_t tensors using a less space efficient varint uin32_t encoding, we are adding a new operator that reads back a byte string into a uint8_t tensor.

Reviewed By: harouwu

Differential Revision: D9004839

fbshipit-source-id: dfd27085c813fdeff13fee15eef4a2e7fef72845
2018-08-15 14:26:50 -07:00
Bram Wasti
fb09292020 Increase tolerance in ConvBN test
Summary: reduce flakiness of test

Reviewed By: Maratyszcza

Differential Revision: D9344877

fbshipit-source-id: 24d5e1b873f94d816c980f3b7db93248cf10aca5
2018-08-15 13:14:35 -07:00
Bangsheng Tang
44b029f5b8 move matrix formation for dot products to precompute/request-only (#10531)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10531

fixed a naming issue in pairwise_similarity

Reviewed By: huayuli00

Differential Revision: D9331716

fbshipit-source-id: d7de36f20504c08b1c7871ccdffa343221a3da0c
2018-08-15 11:02:10 -07:00
Jongsoo Park
d8ff7ad6f8 generalize order switch ops for 1-3d (#10395)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10395

Order switch ops (NCHW2NHWC and NHWC2NCHW) were only supporting 2D images.
This diff generalizes them to 1D and 3D, and also add a unit test we didn't have.

Reviewed By: protonu

Differential Revision: D9261177

fbshipit-source-id: 56e7ec54c9a8fb71781ac1336f3f28cf024b4bda
2018-08-15 10:09:31 -07:00
Peizhao Zhang
ce8e8feceb Fixed a bug in box_with_nms_limit where it may produce more bounding boxes than specified. (#10390)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10390

Fixed a bug in box_with_nms_limit where it may produce more bounding boxes than specified.
* The original code first finds the threshold for the boxes at the 'detectons_per_im' position, and filters out boxes lower than the threshold.
* In some cases that there are multiple boxes have the same threshold, the op will return more boxes than 'detectons_per_im'.

Reviewed By: wat3rBro

Differential Revision: D9252726

fbshipit-source-id: 63f40829bcd275cb181692bc7547c384cee01499
2018-08-14 23:54:23 -07:00
Peizhao Zhang
520f4f6cb9 Added some unit test for box_with_nms_limit_op. (#10389)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10389

Added some unit test for box_with_nms_limit_op.

Reviewed By: wat3rBro

Differential Revision: D9237860

fbshipit-source-id: 2d65744bd387314071b68d2a0c934289fc64a731
2018-08-14 11:55:03 -07:00
jgong5
329d901a91 Fold AffineChannel to Conv, the same way as BN (for Detectron models) (#10293)
Summary:
AffineChannel is being used by public Detectron models, e.g. Mask-RCNN and Faster-RCNN. This PR folds this op into convolution the same way as BN to speed up inference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10293

Differential Revision: D9276789

Pulled By: yinghai

fbshipit-source-id: fbf6dd2c1be05f5713f760752e7245b1320a122b
2018-08-13 22:43:37 -07:00
Wei Wen
ffb59e5f20 adding stochastic quantization caffe2 operators (encoder and decoder in CPU are implemented. GPU mode is pending)
Summary:
This operator implements b (1/2/4/8) bit stochastic quantization of a floating
matrix in a row-wise fashion. 8/b floating values are concatenated to a byte
and returned in uint8 tensor. PR: https://github.com/pytorch/pytorch/pull/8629

Reviewed By: harouwu

Differential Revision: D8493264

fbshipit-source-id: 01f64066568a1e5a2b87c6d2134bd31cdf119c02
2018-08-13 16:39:23 -07:00
Yangqing Jia
40109b16d0 Remove caffe1 specific proto (#10380)
Summary:
This was used as a convenient way for us to convert c1 models. Now that conversion is more or less done, we should probably require any users who need to convert c1 models to explicitly install c1. This PR removes the explicit c1 proto (which was copied from c1) in favor of explicit installation.

Note that caffe_translator would still work properly, only difference is that now users need to install c1 separately.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10380

Differential Revision: D9267981

Pulled By: Yangqing

fbshipit-source-id: a6ce5d9463e6567976da83f2d08b2c3d94d14390
2018-08-10 11:10:26 -07:00
Qin Huang
ab293924bb support generic feature in DPER2 (#10197)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10197

Support generic feature in DPER2

For now since we only have one generic type 1, we are directly adding the parsed feature record to embedding feature.

For new feature types with specific structure, there should also be corresponding coding changes expected.

Reviewed By: itomatik

Differential Revision: D8788177

fbshipit-source-id: 9aaa6f35ece382acb4072ec5e57061bb0727f184
2018-08-04 15:25:13 -07:00
Jerry Zhang
656bb320b7 EnforceFinite test (#10143)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10143

att

Reviewed By: xianjiec

Differential Revision: D9122444

fbshipit-source-id: 010abcc1eb64f084c00890e8de5f5d422b4b8d02
2018-08-03 10:31:29 -07:00
Junjie Bai
4778afb8bb In Expand support using -1 to indicate preserving original size (#10174)
Summary:
zrphercule

https://pytorch.org/docs/stable/tensors.html#torch.Tensor.expand
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10174

Differential Revision: D9136467

Pulled By: bddppq

fbshipit-source-id: 825c489899097acda8d43706964d78a104cdf583
2018-08-02 22:09:47 -07:00
Junjie Bai
dd527db711 Skip TestConvolution.test_convolution_sync on ROCM which caused random segfaults (#10179)
Summary:
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang3.8-rocm1.7.1-ubuntu16.04-test/4701/console

petrex ashishfarmer rohithkrn
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10179

Differential Revision: D9139657

Pulled By: bddppq

fbshipit-source-id: 9b1bb2ad185ed16fff696ce026a5ee5fcf9cbaee
2018-08-02 21:09:27 -07:00
Edward Yang
5765549155 codemod -d caffe2 --extensions cc,h CaffeTypeId TypeIdentifier (#10166)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10166

TypeIdentifier is still easy to codemod away from

Reviewed By: smessmer

Differential Revision: D9132840

fbshipit-source-id: bc83a8b17b2e7c19c9d2c9cfe5c7ce6ec1d8cec5
2018-08-02 11:54:30 -07:00
Lin Li
4a2f3cc45f Improve lars operator by applying clipping (#9905)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9905

This diff improves lars operator in Caffe2 by applying clipping to the computed learning rate

Reviewed By: pjh5

Differential Revision: D9020606

fbshipit-source-id: b579f1d628113c09366feac9406002f1ef4bd54f
2018-08-02 11:54:28 -07:00
Pushkar Tripathi
1f6888b70a Allow mobile exporter to export string arrays (#10017)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10017

Allow mobile exporter to export string arrays

Reviewed By: pjh5

Differential Revision: D9061213

fbshipit-source-id: b6c5257eb2f0f964dba255b97dc5d32af8ce15a7
2018-08-01 16:09:58 -07:00
Pritam Damania
5bd43a7af8 Refactor Seq2SeqModelCaffe2EnsembleDecoder (#10035)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10035

This is an initial diff which refactors some of the components in the Seq2SeqModelCaffe2EnsembleDecoder class.

Reviewed By: jmp84

Differential Revision: D9026372

fbshipit-source-id: 449635208f24494209ae2fb78a19fca872970ea8
2018-07-31 23:09:09 -07:00
Bram Wasti
ceb0f14176 Fix SpatialBN Fusion (#10044)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10044

The test was subtly broken! This transform wasn't writing to the correct blob and the test did not catch that because it was looking at the old version.

thanks @[100022211048576:kerenzhou] for catching this

Reviewed By: Jokeren

Differential Revision: D9075520

fbshipit-source-id: c31ff0afcd78dd2dc7ffc240e2e89eeda87f1fb4
2018-07-31 17:39:34 -07:00
Lu Fang
ee17ed672b Add missing dependencies (#10086)
Summary:
Fix the master
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10086

Differential Revision: D9093741

Pulled By: houseroad

fbshipit-source-id: 65e42994ae7d8e0b449d10a8116a7609434aad04
2018-07-31 13:54:38 -07:00
Lu Fang
56d1a82b31 Add shape inference when converting from onnx to caffe2 (#10037)
Summary:
Otherwise, some RNN case conversion may fail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10037

Reviewed By: orionr

Differential Revision: D9072298

Pulled By: houseroad

fbshipit-source-id: 080f589eba8618719453feb15a7a494fe5380dd0
2018-07-31 12:42:02 -07:00
Xiuyan Ni
db96a0951f Add SIMD version to GFTRL optimizer (#9698)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9698

Add SIMD version to GFTRL optimizer

Differential Revision: D8949723

fbshipit-source-id: 835ce2ce49630ae43fc6bac63c545c14b25f5a26
2018-07-30 15:27:24 -07:00
Anshul Jain (B*8)
56974a06b5 Revert D8909766: [caffe2] Simplify order switch operators
Differential Revision:
D8909766

Original commit changeset: 17a302d5bf4a

fbshipit-source-id: 56c75a8ce27873ed1d5f194b9d6bf0049d8f21ba
2018-07-28 18:40:13 -07:00
Huayu Li
46d8002800 Fix bug that always uses the same blob when repeating poolings
Reviewed By: houseroad

Differential Revision: D9027902

fbshipit-source-id: 957702ad9736812ec5aa32066d286c2c3adffc49
2018-07-28 00:09:16 -07:00
Igor Milyakov
607688e928 Adding reciprocal operator and a test
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9908

Differential Revision: D9035809

Pulled By: virtan

fbshipit-source-id: bce1db46fd55faeeab18a3b266d25c8beeb08df7
2018-07-27 18:24:43 -07:00
Igor Milyakov
12a1af3731 Adding conv tests with explicit algo definition
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9798

Differential Revision: D9034663

Pulled By: virtan

fbshipit-source-id: d722f25f1dd00231ccc3ad5960bbbef63af02c2d
2018-07-27 17:39:17 -07:00
root
c3fe071483 Update hip files (#9826)
Summary:
The goal of this PR is to update the hip files to reflect relevant changes in cuda source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9826

Differential Revision: D9032840

Pulled By: bddppq

fbshipit-source-id: 504e55c46308eebfee3c9a7beea1f294fe03470f
2018-07-27 16:54:39 -07:00
Norman Mu
a532c1a48c Fix default argument value for CTCGreedyDecoder op (#9747)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9747

Currently the ctc_greedy_decoder op initializes the `merge_repeated` argument only if it has been provided by the user. Change to initialize in all cases.

Reviewed By: houseroad

Differential Revision: D8963635

fbshipit-source-id: 18955c7c26a77d9d7f5137e4dec085252ffabfeb
2018-07-27 16:33:07 -07:00
Jerry Zhang
aebf3b47ae Remove template parameter from Tensor (#9939)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939

Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: ezyang, houseroad

Differential Revision: D9024330

fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
2018-07-27 10:56:39 -07:00
Yi Cheng
dfa0af093d Move predictor into caffe2/caffe2/predictor (#9548)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9548

Pull Request resolved: https://github.com/pytorch/translate/pull/157

One part of refactor predictor. Move all the files into predictor dir.

Reviewed By: highker

Differential Revision: D8845276

fbshipit-source-id: 1e917464b0c8a042f025128a082c784eaa3b7013
2018-07-26 19:03:40 -07:00
Jongsoo Park
e7ab093d93 Simplify order switch operators (#9581)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9581

Mostly to simplify code. Should also improve performance but order switch ops
don't take much time anyway.

Reviewed By: viswanathgs

Differential Revision: D8909766

fbshipit-source-id: 17a302d5bf4aba2755d88223fc01a41fd72c5919
2018-07-26 18:24:29 -07:00
Jerry Zhang
969b62f276 Revert D8121878: Remove template parameter from Tensor
Differential Revision:
D8121878

Original commit changeset: 4a5e9a677ba4

fbshipit-source-id: d8e2c0bb145b52fbcca323b22d1d3346f0b3249e
2018-07-26 14:02:04 -07:00
Junjie Bai
0c84a5c27e Pass shape infos to ONNX -> Caffe2 C++ conversion backend (#9870)
Summary:
And let Gemm conversion to inspect the input `C` to try converting to FC.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9870

Reviewed By: houseroad

Differential Revision: D9013198

Pulled By: bddppq

fbshipit-source-id: b4c509cfccca238262e1c406b004e66cef256321
2018-07-26 12:00:32 -07:00
Jerry Zhang
cd5adc7b5f Remove template parameter from Tensor (#13)
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: xw285cornell

Differential Revision: D8121878

fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
2018-07-26 10:25:23 -07:00
Junjie Bai
bdbbcf068a Temporarily disable test_unique on rocm since it keeps running into segfault (#9872)
Summary:
petrex

https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang3.8-rocm1.7.1-ubuntu16.04-test/3758/console
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang3.8-rocm1.7.1-ubuntu16.04-test/3757/console
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang3.8-rocm1.7.1-ubuntu16.04-test/3752/console
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9872

Reviewed By: ezyang

Differential Revision: D9013335

Pulled By: bddppq

fbshipit-source-id: 80490a0fd4a86aa9c8454378c0edddc57d135c4e
2018-07-26 08:34:00 -07:00
Junjie Bai
997f46d1e1 Disable "filter too much" health check for fc operator tests (#9865)
Summary:
makes the CI flaky
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9865

Differential Revision: D9011882

Pulled By: bddppq

fbshipit-source-id: 5124ab97d258eed7585734d64fb01e5df98abd0d
2018-07-25 21:41:14 -07:00
Yuan Xie
c14e17eced Co-disitillation with different archs and/or feature set (#9793)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9793

Enable co-distillation with different archs

Reviewed By: pjh5

Differential Revision: D8888479

fbshipit-source-id: eac14d3d9bb6d8e7362bc91e8200bab237d86754
2018-07-25 10:10:27 -07:00
Siddharth Goyal
4b61760738 Add Adadelta optimizer to caffe2 (#9088)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9088

Closes https://github.com/pytorch/pytorch/pull/9088

- Added CPU/GPU implementations of Adadelta and SparseAdadelta.
- Added corresponding Python unittests

Reviewed By: BIT-silence

Differential Revision: D8712169

fbshipit-source-id: 544e99e13b230a919672a7341b3715d64597c0be
2018-07-24 20:09:21 -07:00
Junjie Bai
e5fe66d7ea Add support for specifying device_option in Functional (#9619)
Summary:
e.g.
```
Functional.Add(x, y, device_option=DeviceOption(HIP, 0))

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9619

Differential Revision: D8966599

Pulled By: bddppq

fbshipit-source-id: 22235e42f19278e79802642798bf0ee70a1202f6
2018-07-24 14:41:59 -07:00
Kittipat Virochsiri
2b134c72e6 Add interface to provide blob types to shape&type inference (#9643)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9643

Current map interface assumes float data type, which is not always correct.

Reviewed By: kennyhorror

Differential Revision: D8455784

fbshipit-source-id: b94a31267760f7f97c15aa4b03008affc347fd10
2018-07-24 11:58:05 -07:00
Junjie Bai
7af5883860 Eanble python tests on ROCM (#9616)
Summary:
petrex
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9616

Differential Revision: D8960623

Pulled By: bddppq

fbshipit-source-id: bde93bda6230094e6bf4badd8ee79f0688ae1993
2018-07-24 11:37:58 -07:00
Junjie Bai
a7afba7308 Remove duplicated functions (#9601)
Summary:
found by linter, duplication was likely introduced in previous code sync
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9601

Differential Revision: D8922379

Pulled By: bddppq

fbshipit-source-id: 1f61bd7f539d823e62920615674a532ec0149623
2018-07-24 10:23:46 -07:00
Lu Fang
adda789770 Skip maxpool_with_indices onnx tests (#9751)
Summary:
Not in the same format. Skip at the moment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9751

Reviewed By: yinghai

Differential Revision: D8965636

Pulled By: houseroad

fbshipit-source-id: 81d39c2f5625c14c0e1ee11408b5f7267b53798f
2018-07-24 10:23:43 -07:00
Xiaomeng Yang
5df3eae89e Add 1x1 specialization for conv with NCHW order (#9671)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9671

Add 1x1 specialization for conv with NCHW order

Reviewed By: houseroad

Differential Revision: D8944686

fbshipit-source-id: 94bf44f69498b1934b7dfff4c0e989342c7bb61c
2018-07-23 18:54:58 -07:00
Yinghai Lu
a9742e1a27 Add fallback to TensorCPU if there are unsupported types for IDEEP Tensor (#9667)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9667

MKL-DNN doesn't support 64-bit integger (cfee61bf81/include/mkldnn_types.h (L62-L75)). So force converting from `TensorCPU<long>` to `s32` Ideep tensor will cause memory issue. This diff gives an alternative solution, where we just fall through to TensorCPU. The reasoning is that since MKL-DNN doesn't support 64 bit integer tensor, downstream ops have to be in CPUConext. So there is no reason force converting to ideep tensor and back.

Reviewed By: pjh5

Differential Revision: D8943544

fbshipit-source-id: f514903cda27e34b8887271c9df56c8220895116
2018-07-23 13:54:57 -07:00
Norman Mu
ee2cc68259 Add ctc_beam_search_decoder op for caffe2 (#9622)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9622

Implement a ctc_beam_sarch_decoder operator based on ctc_greedy_decoder.

Differential Revision: D8903100

fbshipit-source-id: 38973632cb437e5cfcb9ed3a48ed6b901c10efa3
2018-07-23 13:40:24 -07:00
Xiaolong Wang
3e9e3ef383 Improving diagnose RF NE with Cali (#9550)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9550

as titled

Differential Revision: D8899226

fbshipit-source-id: 3c7cf026e8cbc0e95770e5a35b213a97bebba385
2018-07-23 13:40:21 -07:00