It seems that some legacy default stream logic (e.g., present in a8ff647e42/torch/utils/dlpack.py (L114) ) is not handled on the potential receiving end in `torch/_tensor.py`.
Open to suggestions on how to make the test case less clunky, as this was the combination we arrived at after discovering flakiness in alternate versions.
Thanks to Olga Andreeva for surfacing this issue and providing a repro.
CC @Aidyn-A @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101318
Approved by: https://github.com/ngimel
Fixes#72428 according to decision reached in comments.
I've left other instances of `w.r.t.` in tact (e.g. in parameter/return descriptions, in comments, etc) because there were many, and I didn't' want to go out-of-scope. That being said, I'm happy to change those as well if we'd prefer the consistency!
I've also fixed a typo that I came across while grepping for instances.
Will update with screenshots once docs are built.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100028
Approved by: https://github.com/albanD
# Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.
# Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.
# Additional Context
Reopen (#82867)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94968
Approved by: https://github.com/kit1980
Currently it falls through to a call to `storage()`, which the IPU doesn't support.
I've made the minimal change here for ease of merging (this'd help us if it was in for 1.13.1), however...
**QUESTION**: Is there any reason why `not torch._C._has_storage(self)` needs to *also* be guarded on `self.device.type == privateuseone`? in other words, could the condition for using `clone` not be this?
```python
self.is_sparse
or self.device.type
in ["lazy", "xla", "mps", "ort", "meta", "hpu", "ipu"]
or not torch._C._has_storage(self)
or (type(self) is not Tensor and self.data_ptr() == 0)
```
If the condition fails, the very next thing is a call to `self._typed_storage()` which will fail, so it feels to me like *any* case without storage shouldn't fall through to the `storage()` call.
The original PR for adding the 'no storage and device is `PrivateUse1`' condition ([86557](https://github.com/pytorch/pytorch/pull/86557)) doesn't discuss whether this could be broadened.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89129
Approved by: https://github.com/albanD
Fixes#81690
TODO:
* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)
Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484
Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
This can be critical when processing a large number of tensors
```bash
python -m timeit --setup 'import torch; t = torch.empty(1000, device="cuda")' 't.__dlpack_device__()'
```
based on 1.12.1:
before:
100000 loops, best of 5: 2.32 usec per loop
after:
500000 loops, best of 5: 844 nsec per loop
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86665
Approved by: https://github.com/SunDoge, https://github.com/soulitzer
`Tensor.split` calls `TensorBase.split` whose `handle_torch_function` statement passes `func` as `Tensor.split` which is usually correct, but not here because of the use of `super()`. Instead this calls `torch._VF.split` which correctly differentiates from `torch.split`. This is currently okay since we never hit `TensorBase.split` for types with `__torch_function__` however, once we allow skipping only one hop of `__torch_function__` this will expose the error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83866
Approved by: https://github.com/albanD
This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.
## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82867
Approved by: https://github.com/kit1980
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.
## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81021
Approved by: https://github.com/ezyang
### Description
Since the major changes for `_TypedStorage` and `_UntypedStorage` are now complete, they can be renamed to be public.
`TypedStorage._untyped()` is renamed to `TypedStorage.untyped()`.
Documentation for storages is improved as well.
### Issue
Fixes#82436
### Testing
N/A
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82438
Approved by: https://github.com/ezyang
unflatten now has a free function version in torch.flatten in addition to
the method in torch.Tensor.flatten.
Updated docs to reflect this and polished them a little.
For consistency, changed the signature of the int version of unflatten in
native_functions.yaml.
Some override tests were failing because unflatten has unusual
characteristics in terms of the .int and .Dimname versions having
different number of arguments so this required some changes
to test/test_override.py
Removed support for using mix of integer and string arguments
when specifying dimensions in unflatten.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81399
Approved by: https://github.com/Lezcano, https://github.com/ngimel
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.
## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78154
Approved by: https://github.com/ezyang
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__
While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient. So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic. Here's whats
new:
- Expected failure / skip is now done on a per function call basis,
rather than the entire test. This means that separate OpInfo
samples for a function don't affect each other.
- There are now only two lists: expect failure list (where the test
consistently fails on all runs) and skip list (where the test
sometimes passes and fails.
- We explicitly notate the dtype that failed. I considered detecting
when something failed on all dtypes, but this was complicated and
listing everything out seemed to be nice and simple. To keep the
dtypes short, I introduce a shorthand notation for dtypes.
- Conversion to meta tensors is factored into its own class
MetaConverter
- To regenerate the expected failure / skip lists, just run with
PYTORCH_COLLECT_EXPECT and filter on a specific test type
(test_meta or test_dispatch_meta) for whichever you want to update.
Other misc fixes:
- Fix max_pool1d to work with BFloat16 in all circumstances, by making
it dispatch and then fixing a minor compile error (constexpr doesn't
work with BFloat16)
- Add resolve_name for turning random torch API functions into string
names
- Add push classmethod to the Mode classes, so that you can more easily
push a mode onto the mode stack
- Add some more skips for missing LAPACK
- Added an API to let you query if there's already a registration for
a function, added a test to check that we register_meta for all
decompositions (except detach, that decomp is wrong lol), and then
update all the necessary sites to make the test pass.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477
Approved by: https://github.com/zou3519
I figured these out by unconditionally turning on a no-op torch function
mode on the test suite and then fixing errors as they showed up. Here's
what I found:
- _parse_to failed internal assert when __torch_function__'ed because it
claims its name is "to" to the argument parser; added a name override
so we know how to find the correct name
- Infix operator magic methods on Tensor did not uniformly handle
__torch_function__ and TypeError to NotImplemented. Now, we always
do the __torch_function__ handling in
_wrap_type_error_to_not_implemented and your implementation of
__torch_function__ gets its TypeErrors converted to NotImplemented
(for better or for worse; see
https://github.com/pytorch/pytorch/issues/75462 )
- A few cases where code was incorrectly testing if a Tensor was
Tensor-like in the wrong way, now use is_tensor_like (in grad
and in distributions). Also update docs for has_torch_function to
push people to use is_tensor_like.
- is_grads_batched was dropped from grad in handle_torch_function, now
fixed
- Report that you have a torch function even if torch function is
disabled if a mode is enabled. This makes it possible for a mode
to return NotImplemented, pass to a subclass which does some
processing and then pass back to the mode even after the subclass
disables __torch_function__ (so the tensors are treated "as if"
they are regular Tensors). This brings the C++ handling behavior
in line with the Python behavior.
- Make the Python implementation of overloaded types computation match
the C++ version: when torch function is disabled, there are no
overloaded types (because they all report they are not overloaded).
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75484
Approved by: https://github.com/zou3519
Numpy array is chosen to be the rebuild component for
HPU. so add it to the backend list.
Signed-off-by: Ayman Yousef<ayousef@habana.ai>
Signed-off-by: Jeeja <jeejakp@habana.ai>
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74738
Approved by: https://github.com/albanD
I was working on an explanation of how to call into the "super"
implementation of some given ATen operation inside of __torch_dispatch__
(https://github.com/albanD/subclass_zoo/blob/main/trivial_tensors.py)
and I kept thinking to myself "Why doesn't just calling super() on
__torch_dispatch__ work"? Well, after this patch, it does! The idea
is if you don't actually unwrap the input tensors, you can call
super().__torch_dispatch__ to get at the original behavior.
Internally, this is implemented by disabling PythonKey and then
redispatching. This implementation of disabled_torch_dispatch is
not /quite/ right, and some reasons why are commented in the code.
There is then some extra work I have to do to make sure we recognize
disabled_torch_dispatch as the "default" implementation (so we don't
start slapping PythonKey on all tensors, including base Tensors),
which is modeled the same way as how disabled_torch_function is done.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73684
Approved by: albanD
Summary:
A small bug that misses `lazy` in tensor.__deepcopy__, which results in segmentation when deepcopy a lazy model.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73197
Reviewed By: jbschlosser
Differential Revision: D34394482
Pulled By: wconstab
fbshipit-source-id: c84fdb9b3a827677971fd3477a92679d7dbce3c0
(cherry picked from commit c003d150ce)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69265
This is used in tab completion, we should not put warning here
Test Plan:
ci
Imported from OSS
Reviewed By: albanD
Differential Revision: D32778736
fbshipit-source-id: f1bec5e09a8238ab41329ac2b64e6f3267799f6a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030
Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible
Fixes https://github.com/pytorch/pytorch/issues/47442
* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.
Original pull request: https://github.com/pytorch/pytorch/pull/59671
Reviewed By: soulitzer, ngimel
Differential Revision: D29466819
Pulled By: ezyang
fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
Summary:
Happy to get any feedback on how to make this code cleaner!
This:
- Fix Tensor attribute deepcopy BC-breaking?
- Add a test for Tensor attribute deepcopy
- Fix subclass deepcopy
- Moves the subclass serialization tests into their own class not to interfere with other serialization test logic
- Add a test for subclass deepcopy
cc ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65584
Reviewed By: gchanan
Differential Revision: D31206590
Pulled By: albanD
fbshipit-source-id: 74a8f0767f4933b9c941fbea880a8fd1b893ea2f