Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:
```2to3 -f future -w caffe2```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033
Reviewed By: seemethere
Differential Revision: D23808648
Pulled By: bugra
fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27508
Implemented a simple exponential decay of the weight of lr loss function, with a lower bound.
Test Plan:
buck test //caffe2/caffe2/fb/dper/layer_models/tests:mtml_test -- test_task_weight_decay
https://our.intern.facebook.com/intern/testinfra/testrun/3377699729136308
canary: f140103452
Reviewed By: chenshouyuan
Differential Revision: D17524101
fbshipit-source-id: 9a653e21a4ecb74dfc4ac949c9e3388f36ef3a20
Summary:
[Not in need of review at this time]
Support focal loss in MTML (effectively dper2 in general) as described in https://arxiv.org/pdf/1708.02002.pdf. Adopt approach similar to Yuchen He's WIP diff D14008545
Test Plan:
Passed the following unit tests
buck test //caffe2/caffe2/fb/dper/layer_models/tests/split_1:sparse_nn_test -- test_lr_loss_based_focal_loss
buck test //caffe2/caffe2/fb/dper/layer_models/tests:mtml_test_2 -- test_mtml_with_lr_loss_based_focal_loss
buck test //caffe2/caffe2/fb/dper/layer_models/tests/split_1:sparse_nn_test -- test_lr_loss_based_focal_loss_with_stop_grad_in_focal_factor
Passed ./fblearner/flow/projects/dper/canary.sh; URL to track workflow runs: https://fburl.com/fblearner/446ix5q6
Model based on V10 of this diff
f133367092
Baseline model
f133297603
Protobuf of train_net_1 https://our.intern.facebook.com/intern/everpaste/?color=0&handle=GEq30QIFW_7HJJoCAAAAAABMgz4Jbr0LAAAz
Reviewed By: hychyc90, ellie-wen
Differential Revision: D16795972
fbshipit-source-id: 7bacae3e2255293d337951c896e9104208235f33
* [fix] Re-enable events in RNN ops
We have earlier added event disabling in RNN ops as back then we didn't use
events, with current use cases this is no longer true
(https://fburl.com/8vd0lp8y)
* use ops with cude impl
* Revert D7729695: [caffe2][fix] Re-enable events in RNN ops
This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [observer] Clean up observer_config.h
#accept2ship
* [1/n] Refactor dataio_test.py
Replace code duplication with a common function
* Add barrier net that runs before training nets
Add a synchonize barrier net that is run before training nets. With this net, shards that are faster will wait for other shards before start training. This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow. Similar change in speech/asr_training workflow will come in another diff.
* Support the dnnlowp backend in caffe2_benchmark
This is for SHARE operator latency evaluation
* Migrate integral_image_op to main caffe2
migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi
to caffe2/caffe2/operators and implement its CPU version. Write up a test
using the hypothesis_test mechanism
* [pos_disc, fbcode] Implement unjoined lr loss
As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss.
The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where
loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x))
For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as
loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x))
Then the final expression becomes
loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0)))
where y is the true label, x is the dot product and p = logistic(x).
This kind of implementation is align with the current implementation of the original cross entropy in
https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13
* Keep the array to fix the conflict
* [C2] Compute Adagrad effective LR
The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob.
* Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs
1. Open-source extractMetaNetDef and runGlobalInitialization, for use in
2. new Predictor constructor from db file.
3. Add new run function that returns outputs as TensorMap
* Disable eigen cpu
Disable eigen cpu in transpose and reduce
* Introduce request_only/object_only property of ModelLayer
by default this is False
* A simple TC Caffe2 benchmark
We can run tunner, get MappingOptions and then use them to
compare against cuBLAS
currently broken due to LLVM issues. How to run:
hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01
add D7401202
add D7434625
add D7506031
add D7540728
buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark
* Move Caffe2 feature_maps_ops to open source
Need feature maps operators in open source project facebookresearch/BlueWhale
* Manually fix the conflicts in channel shuffle op
* Fix the inconsistency between different gh and fbcode
* Skip Adagrad GPU Test (Because some gpu implementation is missing)
* Fix another test to make sure it won't run on gpu when implementation is not available yet
* fix unit test for sqrt op
From the error logging:
[idx, grad, grad_estimate] are:
[[ 146. 0.5 0.45776367]
[ 147. 0.5 0.45776367]
The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )
The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)
This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace
Tested with:
`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`
* CompositeReader & CompositeReaderBuilder
A new type of reader gluing multiple readers together.
* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"
Original commit changeset: 9325a4356dbe
* [dai][WIP] convert params to int8 on ps before sending to trainer
Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.
* [easy] improve unit test for sparse length sum ops
as desc.
#accept2ship
* Update GitHub upstream to 771fcb3455
* move sparse hash unique ops to OOS and add unit tests
- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2
- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test
* group_norm_op for caffe2
This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494
This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).
* Resubmit D7405233: disappeared in D7464958
OOS publish causes the op missing -- however, test was still there
* [c2] add sparse hash engine for cuda unique op
The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.
* [dper][gpu] enable unit testing gpu trainer for sparse nn
to debug the GPU trainer using mock data in unit test.
make it easier to develop GPU trainer for new models.
* Reuse Gloo context for Synchronize() calls
Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).
* [GanH/WGAN][1/n]: add FC param clipping
as titled
* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark
* [GanH]: enable diagnose within model
avoid finding blob names but to directly enable inside the model
* Add `net_transformer_fun` option to DPM
This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.
Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.
* [DT] [33/n] Compile flow task groups
task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.
* Initial commit for sparse_normalize vectorization and benchmark
* [GanH]: LB Calibration for JSD
as titled
* Tracing event in async executor
Adding event tracing through TRACE_EVENT macro in async executor
* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset
D7409751 got lost in D7464958
* Visualizing realtime weights values
we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.
* [GanH][Easy]: Fix Homotopy Weighting
apparantely, there was a bug in homotopy weight (alpha, beta) update
* [c2] move sparse hash unique op out of oss
so that oss do not need to depend on google hash map.
* Get rid of std::round as it's not supported on Android
* Revert changes on setup.py
* Skip shaky test on Dataio
* fix
This reverts commit d63266ccbc0c1390c58c2a71ae0b562fdec2fbc0
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [GanH]: two_task_discriminator
as titled
and adding label smooth
* [Dper2] Simplified UI options needed for blob magnitude visualization
* [GanH]: fix tags
as titled
* Added type and shape inference for GatherRange operator
This helps with type / shape inference when using this operator in layers.
Also just a nice to have in general.
* Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python
We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException.
* Bind Gloo IoException to IoError in Python
Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind.
* [GanH]: add label smoothing to softmax with loss
as titled
* [C2] Enable LARS in Adagrad and hook it to DPER
* [DPER] Don't pass LayerModelHelper in create_trainer_nodes
Since we're planning to get rid of it eventually and I want to get access to
NetDef only interface ASAP - I'm looking towards removing all references to
LMH, where we don't really need them.
* fix bugs in LambdaRankNdcgOp
the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log.
* Restrict thread pool on iOS to only big cores
Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them.
However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android.
* Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine
Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine
* make clang happy and get fewer warnings
make clang happy and get fewer warnings
* [Personalization] Support add_output_schema() in layer_model_helper
Problem:
Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer.
Solution:
For flexibility, we want to add fields to output_schema incrementally.
Plan:
Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema.
Callsite:
The add_output_schema() should be called instead at https://fburl.com/efth5zer
Reference:
The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
Summary: change all use cases of BatchLRloss to the numerically stable version. This includes the uses of function build_loss defined in fbcode/caffe2/caffe2/fb/dper/layer_models/loss.py and class BatchLRLoss defined in fbcode/caffe2/caffe2/python/layers/batch_lr_loss.py.
Reviewed By: xianjiec
Differential Revision: D6643074
fbshipit-source-id: b5678556b03cbdd380cab8a875974a87c33d7f12
Summary: Replaced sigmoid + xent loss with SigmoidCrossEntropyWithLogits. The sigmoid layer computes the multinomial logistic loss of the sigmoid of its inputs. It's conceptually identical to a sigmoid layer followed by a multinomial logistic loss layer, but provides a more numerical stable gradient.
Reviewed By: xianjiec
Differential Revision: D6305455
fbshipit-source-id: 444c9f651fbdf13c3c52be5142769f8f98ed8770
Summary:
To achive this, I modified the blob name scheme defined in a layer.
Before it was scope/fc_w and scope/fc_w_auto_0 (if there is another fc
within the same scope).
Now I change it to scope/fc/w and scope/fc_auto_0/w.
That is, we rely on the uniqueness of the scoped layer name to define
names for blobs.
I also overwrote the create_param method in LayerModelHelper to let it
use the resolved name for blobs given the sharingparameter context.
There are some details such as making the initializer more structured
that I need to finalize.
Reviewed By: kennyhorror
Differential Revision: D5435132
fbshipit-source-id: a0525f5ea0977e255dd5ea765b38913f5951d455
Summary: Current eval nets contain loss operators; see example: https://fburl.com/6otbe0n7, which is unnecessary. This diff is to remove them from the eval net.
Differential Revision: D4934589
fbshipit-source-id: 1ba96c20a3a7ef720414acb4124002fb54cabfc7
Summary:
multiple places broken, blocking the push :(
- fix the weighted training for ads and feeds
- fix the publishing if no exporter model is selected
- fix the feeds retrieval evaluation
- added the default config for retrieval workflows. plan to use for flow test (in next diff)
- clean up not used code
- smaller hash size for faster canary test
Reviewed By: chocjy
Differential Revision: D4817829
fbshipit-source-id: e3d407314268b6487c22b1ee91f158532dda8807
Summary:
1. migrate the basic mtml model to dper 2
2. test dper 2 mtml model
3. test all optimizers
Reviewed By: kittipatv
Differential Revision: D4680215
fbshipit-source-id: 7aac5c59bdac22fcad8ed869b98e9e62dca1d337
Summary:
Remove the use of `NextName` in layer model helper, so that the same function return `model_helper` that should construct identical `Net`, when under the same NameScope.
The `NextScopedBlob` should only take effect when there is real name conflicting, otherwise it returns ScopedBlobReference.
This is critical for parameter blobs. In long run, we need to be able to specify parameter blobs more explicitly. (kennyhorror is working on this). This solution works in short term for e.g., two tower sparse nn models.
Reviewed By: kennyhorror
Differential Revision: D4555423
fbshipit-source-id: 2c4b99a61392e5d51aa878f7346466a8f14be187