Commit Graph

177 Commits

Author SHA1 Message Date
Can Balioglu
80b19c4c8c Enable Python bindings for UntypedStorage (#68945)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945

This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110

Test Plan: Run the existing unit and integration tests.

Reviewed By: albanD

Differential Revision: D32676505

fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
2022-01-20 02:11:34 +00:00
kshitij12345
b737e09f60 expose return_types in Python (#66614)
Summary:
https://github.com/facebookresearch/functorch/issues/87

TODO:
* [x] Add comments
* [x] Add test
* [x] Fix XLA

<details>

<summary>Generated python_return_types.cpp</summary>

```cpp
#include <Python.h>

#include <vector>
#include <map>
#include <string>

#include "torch/csrc/autograd/python_return_types.h"
#include "torch/csrc/utils/structseq.h"
#include "torch/csrc/Exceptions.h"

namespace {
PyTypeObject* get__det_lu_based_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"det", ""}, {"lu", ""}, {"pivs", ""},  {nullptr} };
    static PyTypeObject _det_lu_based_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._det_lu_based_helper", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_det_lu_based_helperNamedTuple, &desc);
        _det_lu_based_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_det_lu_based_helperNamedTuple;
}
PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple, &desc);
        _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
}
PyTypeObject* get__fused_moving_avg_obs_fq_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fused_moving_avg_obs_fq_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fused_moving_avg_obs_fq_helper", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fused_moving_avg_obs_fq_helperNamedTuple, &desc);
        _fused_moving_avg_obs_fq_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fused_moving_avg_obs_fq_helperNamedTuple;
}
PyTypeObject* get__lu_with_info_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"LU", ""}, {"pivots", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject _lu_with_infoNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._lu_with_info", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_lu_with_infoNamedTuple, &desc);
        _lu_with_infoNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_lu_with_infoNamedTuple;
}
PyTypeObject* get__unpack_dual_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"primal", ""}, {"tangent", ""},  {nullptr} };
    static PyTypeObject _unpack_dualNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._unpack_dual", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_unpack_dualNamedTuple, &desc);
        _unpack_dualNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_unpack_dualNamedTuple;
}
PyTypeObject* get_aminmax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmaxNamedTuple, &desc);
        aminmaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmaxNamedTuple;
}

PyTypeObject* get_aminmax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmax_outNamedTuple1, &desc);
        aminmax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmax_outNamedTuple1;
}
PyTypeObject* get_cummax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummaxNamedTuple, &desc);
        cummaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummaxNamedTuple;
}

PyTypeObject* get_cummax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummax_outNamedTuple1, &desc);
        cummax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummax_outNamedTuple1;
}
PyTypeObject* get_cummin_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cumminNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cumminNamedTuple, &desc);
        cumminNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cumminNamedTuple;
}

PyTypeObject* get_cummin_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummin_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummin_outNamedTuple1, &desc);
        cummin_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummin_outNamedTuple1;
}
PyTypeObject* get_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eig_outNamedTuple, &desc);
        eig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eig_outNamedTuple;
}

PyTypeObject* get_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eigNamedTuple1, &desc);
        eigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eigNamedTuple1;
}
PyTypeObject* get_frexp_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexpNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexpNamedTuple, &desc);
        frexpNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexpNamedTuple;
}

PyTypeObject* get_frexp_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexp_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexp_outNamedTuple1, &desc);
        frexp_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexp_outNamedTuple1;
}
PyTypeObject* get_geqrf_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrf_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrf_outNamedTuple, &desc);
        geqrf_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrf_outNamedTuple;
}

PyTypeObject* get_geqrf_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrfNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrfNamedTuple1, &desc);
        geqrfNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrfNamedTuple1;
}
PyTypeObject* get_histogram_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogram_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogram_outNamedTuple, &desc);
        histogram_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogram_outNamedTuple;
}

PyTypeObject* get_histogram_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogramNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogramNamedTuple1, &desc);
        histogramNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogramNamedTuple1;
}
PyTypeObject* get_kthvalue_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalueNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalueNamedTuple, &desc);
        kthvalueNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalueNamedTuple;
}

PyTypeObject* get_kthvalue_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalue_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalue_outNamedTuple1, &desc);
        kthvalue_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalue_outNamedTuple1;
}
PyTypeObject* get_linalg_cholesky_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_exNamedTuple, &desc);
        linalg_cholesky_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_exNamedTuple;
}

PyTypeObject* get_linalg_cholesky_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_ex_outNamedTuple1, &desc);
        linalg_cholesky_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigNamedTuple, &desc);
        linalg_eigNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigNamedTuple;
}

PyTypeObject* get_linalg_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eig_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eig_outNamedTuple1, &desc);
        linalg_eig_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eig_outNamedTuple1;
}
PyTypeObject* get_linalg_eigh_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eighNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eighNamedTuple, &desc);
        linalg_eighNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eighNamedTuple;
}

PyTypeObject* get_linalg_eigh_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigh_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigh_outNamedTuple1, &desc);
        linalg_eigh_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigh_outNamedTuple1;
}
PyTypeObject* get_linalg_inv_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_exNamedTuple, &desc);
        linalg_inv_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_exNamedTuple;
}

PyTypeObject* get_linalg_inv_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_ex_outNamedTuple1, &desc);
        linalg_inv_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsqNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsqNamedTuple, &desc);
        linalg_lstsqNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsqNamedTuple;
}

PyTypeObject* get_linalg_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsq_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq_out", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsq_outNamedTuple1, &desc);
        linalg_lstsq_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsq_outNamedTuple1;
}
PyTypeObject* get_linalg_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qrNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qrNamedTuple, &desc);
        linalg_qrNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qrNamedTuple;
}

PyTypeObject* get_linalg_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qr_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qr_outNamedTuple1, &desc);
        linalg_qr_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qr_outNamedTuple1;
}
PyTypeObject* get_linalg_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdetNamedTuple, &desc);
        linalg_slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdetNamedTuple;
}

PyTypeObject* get_linalg_slogdet_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdet_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdet_outNamedTuple1, &desc);
        linalg_slogdet_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdet_outNamedTuple1;
}
PyTypeObject* get_linalg_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svd_outNamedTuple, &desc);
        linalg_svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svd_outNamedTuple;
}

PyTypeObject* get_linalg_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svdNamedTuple1, &desc);
        linalg_svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svdNamedTuple1;
}
PyTypeObject* get_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsq_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsq_outNamedTuple, &desc);
        lstsq_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsq_outNamedTuple;
}

PyTypeObject* get_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsqNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsqNamedTuple1, &desc);
        lstsqNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsqNamedTuple1;
}
PyTypeObject* get_lu_unpack_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpackNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpackNamedTuple, &desc);
        lu_unpackNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpackNamedTuple;
}

PyTypeObject* get_lu_unpack_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpack_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpack_outNamedTuple1, &desc);
        lu_unpack_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpack_outNamedTuple1;
}
PyTypeObject* get_max_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject maxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&maxNamedTuple, &desc);
        maxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &maxNamedTuple;
}

PyTypeObject* get_max_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject max_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&max_outNamedTuple1, &desc);
        max_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &max_outNamedTuple1;
}
PyTypeObject* get_median_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject medianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&medianNamedTuple, &desc);
        medianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &medianNamedTuple;
}

PyTypeObject* get_median_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject median_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&median_outNamedTuple1, &desc);
        median_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &median_outNamedTuple1;
}
PyTypeObject* get_min_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject minNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&minNamedTuple, &desc);
        minNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &minNamedTuple;
}

PyTypeObject* get_min_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject min_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&min_outNamedTuple1, &desc);
        min_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &min_outNamedTuple1;
}
PyTypeObject* get_mode_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject modeNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&modeNamedTuple, &desc);
        modeNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &modeNamedTuple;
}

PyTypeObject* get_mode_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject mode_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&mode_outNamedTuple1, &desc);
        mode_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &mode_outNamedTuple1;
}
PyTypeObject* get_nanmedian_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedianNamedTuple, &desc);
        nanmedianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedianNamedTuple;
}

PyTypeObject* get_nanmedian_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedian_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedian_outNamedTuple1, &desc);
        nanmedian_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedian_outNamedTuple1;
}
PyTypeObject* get_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qr_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qr_outNamedTuple, &desc);
        qr_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qr_outNamedTuple;
}

PyTypeObject* get_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qrNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qrNamedTuple1, &desc);
        qrNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qrNamedTuple1;
}
PyTypeObject* get_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&slogdetNamedTuple, &desc);
        slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &slogdetNamedTuple;
}
PyTypeObject* get_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solveNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solveNamedTuple, &desc);
        solveNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solveNamedTuple;
}

PyTypeObject* get_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solve_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solve_outNamedTuple1, &desc);
        solve_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solve_outNamedTuple1;
}
PyTypeObject* get_sort_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sort_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sort_outNamedTuple, &desc);
        sort_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sort_outNamedTuple;
}

PyTypeObject* get_sort_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sortNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sortNamedTuple1, &desc);
        sortNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sortNamedTuple1;
}
PyTypeObject* get_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svd_outNamedTuple, &desc);
        svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svd_outNamedTuple;
}

PyTypeObject* get_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svdNamedTuple1, &desc);
        svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svdNamedTuple1;
}
PyTypeObject* get_symeig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeig_outNamedTuple, &desc);
        symeig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeig_outNamedTuple;
}

PyTypeObject* get_symeig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeigNamedTuple1, &desc);
        symeigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeigNamedTuple1;
}
PyTypeObject* get_topk_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topk_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topk_outNamedTuple, &desc);
        topk_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topk_outNamedTuple;
}

PyTypeObject* get_topk_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topkNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topkNamedTuple1, &desc);
        topkNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topkNamedTuple1;
}
PyTypeObject* get_triangular_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solve_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solve_outNamedTuple, &desc);
        triangular_solve_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solve_outNamedTuple;
}

PyTypeObject* get_triangular_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solveNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solveNamedTuple1, &desc);
        triangular_solveNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solveNamedTuple1;
}
}

namespace torch {
namespace autograd {

std::map<std::string, PyTypeObject*>& get_namedtuple_types_map() {
  // [NOTE] Non-global map
  // This map calls Python functions during its initialization.
  // If it is a global static variable and in case it is loaded
  // before Python interpreter is ready, then the calls it makes during
  // initialization will SEGFAULT.
  // To avoid this we make it function static variable so that it is
  // initialized only after the Python interpreter is ready.
  static std::map<std::string, PyTypeObject*> namedtuple_types_map = {
    {"_det_lu_based_helper", get__det_lu_based_helper_namedtuple()},
    {"_fake_quantize_per_tensor_affine_cachemask_tensor_qparams", get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple()},
    {"_fused_moving_avg_obs_fq_helper", get__fused_moving_avg_obs_fq_helper_namedtuple()},
    {"_lu_with_info", get__lu_with_info_namedtuple()},
    {"_unpack_dual", get__unpack_dual_namedtuple()},
    {"aminmax", get_aminmax_namedtuple()},
    {"aminmax_out", get_aminmax_out_namedtuple()},
    {"cummax", get_cummax_namedtuple()},
    {"cummax_out", get_cummax_out_namedtuple()},
    {"cummin", get_cummin_namedtuple()},
    {"cummin_out", get_cummin_out_namedtuple()},
    {"eig_out", get_eig_out_namedtuple()},
    {"eig", get_eig_namedtuple()},
    {"frexp", get_frexp_namedtuple()},
    {"frexp_out", get_frexp_out_namedtuple()},
    {"geqrf_out", get_geqrf_out_namedtuple()},
    {"geqrf", get_geqrf_namedtuple()},
    {"histogram_out", get_histogram_out_namedtuple()},
    {"histogram", get_histogram_namedtuple()},
    {"kthvalue", get_kthvalue_namedtuple()},
    {"kthvalue_out", get_kthvalue_out_namedtuple()},
    {"linalg_cholesky_ex", get_linalg_cholesky_ex_namedtuple()},
    {"linalg_cholesky_ex_out", get_linalg_cholesky_ex_out_namedtuple()},
    {"linalg_eig", get_linalg_eig_namedtuple()},
    {"linalg_eig_out", get_linalg_eig_out_namedtuple()},
    {"linalg_eigh", get_linalg_eigh_namedtuple()},
    {"linalg_eigh_out", get_linalg_eigh_out_namedtuple()},
    {"linalg_inv_ex", get_linalg_inv_ex_namedtuple()},
    {"linalg_inv_ex_out", get_linalg_inv_ex_out_namedtuple()},
    {"linalg_lstsq", get_linalg_lstsq_namedtuple()},
    {"linalg_lstsq_out", get_linalg_lstsq_out_namedtuple()},
    {"linalg_qr", get_linalg_qr_namedtuple()},
    {"linalg_qr_out", get_linalg_qr_out_namedtuple()},
    {"linalg_slogdet", get_linalg_slogdet_namedtuple()},
    {"linalg_slogdet_out", get_linalg_slogdet_out_namedtuple()},
    {"linalg_svd_out", get_linalg_svd_out_namedtuple()},
    {"linalg_svd", get_linalg_svd_namedtuple()},
    {"lstsq_out", get_lstsq_out_namedtuple()},
    {"lstsq", get_lstsq_namedtuple()},
    {"lu_unpack", get_lu_unpack_namedtuple()},
    {"lu_unpack_out", get_lu_unpack_out_namedtuple()},
    {"max", get_max_namedtuple()},
    {"max_out", get_max_out_namedtuple()},
    {"median", get_median_namedtuple()},
    {"median_out", get_median_out_namedtuple()},
    {"min", get_min_namedtuple()},
    {"min_out", get_min_out_namedtuple()},
    {"mode", get_mode_namedtuple()},
    {"mode_out", get_mode_out_namedtuple()},
    {"nanmedian", get_nanmedian_namedtuple()},
    {"nanmedian_out", get_nanmedian_out_namedtuple()},
    {"qr_out", get_qr_out_namedtuple()},
    {"qr", get_qr_namedtuple()},
    {"slogdet", get_slogdet_namedtuple()},
    {"solve", get_solve_namedtuple()},
    {"solve_out", get_solve_out_namedtuple()},
    {"sort_out", get_sort_out_namedtuple()},
    {"sort", get_sort_namedtuple()},
    {"svd_out", get_svd_out_namedtuple()},
    {"svd", get_svd_namedtuple()},
    {"symeig_out", get_symeig_out_namedtuple()},
    {"symeig", get_symeig_namedtuple()},
    {"topk_out", get_topk_out_namedtuple()},
    {"topk", get_topk_namedtuple()},
    {"triangular_solve_out", get_triangular_solve_out_namedtuple()},
    {"triangular_solve", get_triangular_solve_namedtuple()},
  };
  return namedtuple_types_map;
}

PyTypeObject* get_namedtuple(std::string name) {
  static auto& namedtuple_types_map = get_namedtuple_types_map();
  return namedtuple_types_map[name];
}

void initReturnTypes(PyObject* module) {
  static struct PyModuleDef def = {
      PyModuleDef_HEAD_INIT, "torch._C._return_types", nullptr, -1, {}};
  PyObject* return_types_module = PyModule_Create(&def);
  if (!return_types_module) {
    throw python_error();
  }

  for (const auto& return_type_pair : get_namedtuple_types_map()) {
    // hold onto the TypeObject for the unlikely case of user
    // deleting or overriding it.
    Py_INCREF(return_type_pair.second);
    if (PyModule_AddObject(
            return_types_module,
            return_type_pair.first.c_str(),
            (PyObject*)return_type_pair.second) != 0) {
      Py_DECREF((PyObject*)return_type_pair.second);
      throw python_error();
    }
  }

  // steals a reference to return_types on success
  if (PyModule_AddObject(module, "_return_types", return_types_module) != 0) {
    Py_DECREF(return_types_module);
    throw python_error();
  }
}

} // namespace autograd
} // namespace torch

```

</details>

<details>

<summary>Eg. updated call in other python_*_functions</summary>

```cpp
// linalg_cholesky_ex
static PyObject * THPVariable_linalg_cholesky_ex(PyObject* self_, PyObject* args, PyObject* kwargs)
{
  HANDLE_TH_ERRORS
  static PyTypeObject* NamedTuple = get_namedtuple("linalg_cholesky_ex");
  static PyTypeObject* NamedTuple1 = get_namedtuple("linalg_cholesky_ex_out");
  static PythonArgParser parser({
    "linalg_cholesky_ex(Tensor input, *, bool upper=False, bool check_errors=False, TensorList[2] out=None)",
  }, /*traceable=*/true);

  ParsedArgs<4> parsed_args;
  auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
  if(_r.has_torch_function()) {
    return handle_torch_function(_r, nullptr, args, kwargs, THPLinalgVariableFunctionsModule, "torch.linalg");
  }
  if (_r.isNone(3)) {
    // aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)

    auto dispatch_linalg_cholesky_ex = [](const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex(self, upper, check_errors);
    };
    return wrap(NamedTuple, dispatch_linalg_cholesky_ex(_r.tensor(0), _r.toBool(1), _r.toBool(2)));
  } else {
    // aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
    auto out = _r.tensorlist_n<2>(3);
    auto dispatch_linalg_cholesky_ex_out = [](at::Tensor & L, at::Tensor & info, const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex_out(L, info, self, upper, check_errors);
    };
    return wrap(NamedTuple1, dispatch_linalg_cholesky_ex_out(out[0], out[1], _r.tensor(0), _r.toBool(1), _r.toBool(2)));
  }
  Py_RETURN_NONE;
  END_HANDLE_TH_ERRORS
}

```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66614

Reviewed By: H-Huang

Differential Revision: D32741134

Pulled By: zou3519

fbshipit-source-id: 27bada30d20e66333ca1be1775608d9f0cbf9f59
2021-12-06 09:05:29 -08:00
Brian Hirsh
7c90bd77ec Test functionalization pass in python (#66101)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66101

Updated description:

This PR tests the functionalization pass in python in two ways. For each of the test programs that I have in `test_functionalization.py`, it:
- runs the program with and without functionalization, and asserts the outputs and (potentially mutated) inputs are equal in both cases
- runs the program with `LoggingTensor`, and uses expecttests on the resulting graph. I manually confirm that the graphs look reasonable and only contain functional ops.

Mechanically, the changes include:
- factoring out `LoggingTensor` into a testing util so it can be re-used in multiple tests
- adding some private python api's in the `torch` namespace as hooks that I can use during testing

In the original version of this PR, I also added some fixes to the `_make_subclass()` function in python: allowing you to pass in strides and storage_offset. I kept them in mainly because the changes were already there.

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D31942095

Pulled By: bdhirsh

fbshipit-source-id: 90ff4c88d461089704922e779571eee09c21d707
2021-11-09 14:34:05 -08:00
Brian Hirsh
0032fa7725 Add a Functionalization pass in core (#64432)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64432

Original PR description + feedback here: https://github.com/pytorch/pytorch/pull/63048

I've addressed all of the feedback in the original PR and made some pretty large changes, listed below.

**Table of Contents**
- Starting points
- List of the main changes from the original PR
- Next Steps
- Example codegen output (for a view, mutation, and view+mutation op)

**Starting Points**

A good place to start when looking through the PR:
* Alban mentioned that this is a useful mental model (thanks Ed for originally making this clear to me). Semantically, the pass currently does THREE things, which are all needed by functorch - all fused together into one big pass.
  * (a) alias removal, which replaces {view} calls with {view}_copy calls, and manually tracks aliasing information, so that when one tensor is mutated, we re-apply the same mutation to all of the aliases. This is the bulk of the work - once this is done, the next 2 things are trivial to implement.
  * (b) mutation removal, which is easy to do once we know that there are no aliases. Every mutation `a.add_(b)` becomes `a.replace_(a.add(b))`
  * (c) reapplying views: all of the `{view}_copy` calls are replaced with `{view}` calls again. This is an optimization that we can make specifically for functorch (and strided backends), that only care about mutation removal and not alias removal
  * XLA and Vulkan only want (a), or (a) + (b). Later, we'll want to split this out so that you can actually opt into different versions of this logic.
  * There is currently no {view}_copy replacement, because the pass just <replace views with copies> and <replace copies with views> steps have been combined. Later, we'll want to actually implement {view}_copy variants of each view operator, probably with codegen.
* documentation breadcrumb 1, in `FunctionalTensorWrapper.cpp`: https://github.com/pytorch/pytorch/pull/64432/files#diff-a0bac99bf205dba5b94cb64fc2466d3d55d991887572f9cd6a02e27b3a91dd60R59 (you might have to expand the `FunctionalTensorWrapper.cpp` file, which GitHub closes by default because it's large)
* documentation breadcrumb 2, in `FunctionalTensorWrapper.h`: https://github.com/pytorch/pytorch/pull/64432/files#diff-c945c71a4ccac65871f24a912e8904f9a5088b24a32e636727ea9c8fe920708aR12
* Reading through the codegen output at the bottom of this description.

**Main changes from the original PR**

(1)  I use lambdas instead of a giant enum to handle all of the different views.

This results in less boilerplate per view op (and more stuff that can be codegen'd). Every `ViewMeta` object now contains a `forward` and `reverse` lambda, that knows how to replay the view and its inverse. This makes the actual code that executes the replaying logic a lot less boilerplate-y (see `Alias::sync_update_operations` and `FunctionalTensorWrapper::sync_`)

(2) Every tensor during the functionalization pass is always wrapped in a `FunctionalTensorWrapper`.

This is potentially unnecessary for Vulkan/XLA, and will have a mild perf impact, but for now this PR just targets the functorch use case. I previously had a complicated design a (`FunctionalTensorImplBase` class) to avoid needing the wrapper for XLA, but it had some subtleties that are gonna require more thought to fix, so I'm pushing that off for now.

(3) `FunctionalTensorWrapper` objects accurately report stride information.

It's a little annoying to do this though, because the logic that calculates stride info for each view isn't easily separated from the actual view kernels in core, `at::native::{view}`. I do this by adding logic in each `at::functionalization::{view}` kernel to call the reference implementation `at::native::{view}`. I don't do anything with the output aside from taking it's size/stride/storage_offset to set the actual output tensor's size/stride/storage_offset correctly. There's another annoying part to this: I'm pretty sure that we want to pass in the actual *wrapper* tensors directly into the native kernels, not their inner unwrapped values. But there are some `at::native::{view}` kernels that call other tensor methods, which re-invokes the dispatcher, calling functionalization/functorch kernels that try do the unwrapping.

To do this, right now I have an `AutoDispatchDirectlyToNative` guard that basically ensures that any tensor methods called inside of the at::native::{view} op always redispatch straight to the CPU kernel (which will be another at::native:: kernel). This feels kind of heavy handed, but I'm not sure of a better way to do it.

(4) `FunctionalTensorWrapper` objects accurately report aliasing information.

There's a new `FunctionalStorageImpl` class (subclass of `StorageImpl`) that allows tensors in the functionalization pass to accurately alias storage. If two tensors `a` and `b` in a functionalized program are views of one another, then `a.storage.is_alias_of(b.storage)` should return true. I added this in a pretty similar way to how meta tensors allocate storage, although I don't pass in an actual allocator (I think this is fine because you should never resize a functional tensor's storage).

One thing I'm not sure about - should `FunctionalTensorWrapper` set `storage_access_should_throw_`: (a) always, (b) never, (c) only if its wrapped tensor has it set.

Right now I have it not set, mostly because calling the reference view functions (`at::native::{view}`) requires looking at the storage. But that means that if you try to access storage from python in a functionalized program, you'll get silent garbage instead of an error. Related question: are we planning on exposing meta tensor storage to python in the future (even though it contains garbage)?

(5) better docs :)

**View operator coverage**

(6) The functionalization pass now gets math-composite view ops for free.

I didn't add the `Functionalize` dispatch key to the composite set, because I don't want composite ops like `torch.ones` to get decomposed before hitting the functionalization pass. Instead, I added codegen to manually register the `at::native::` kernels of composite view ops. This is a little hairy, because the names of the `at::native::` kernels aren't easily accessible. They're stored in a `Dict[DispatchKey, BackendIndex]`. I made a best-effort attempt to get each view kernel's name, basically by assuming that every view op has either a composite or cpu implementation.
There's also a hardcoded list of composite view ops in `gen_inplace_or_view_type.py`, but it looks like it's wrong. This is probably worth rationalizing later, but instead I created a new list of the "complete" set of composite view ops, and preserved the old set by hardcoding the delta between the two sets.

(7) I've added codegen for ops that are both views AND mutations, like `transpose_()` (why do we even have these {emoji:1f622}).

From some light testing, it looks like they work correctly with one caveat: I had a hard time ensuring that functorch programs that mutate their inputs using ops like `transpose_()` preserve the input mutations after the program finishes running. For (in my corresponding functorch branch) I emit a warning when this happens, and just don't preserve the mutation

(8) I added `{view}_inverse` implementations for every view op, in `FunctionalInverses.cpp`.

These are needed to take mutations made to views and replay them back onto the base. To reduce boilerplate, the codegen generates function declarations for each `{view}_inverse` function, so you get a nice compiler error when someone eventually adds a new view op.

The only view ops currently not supported are (a) as_strided, and (b) the sparse view ops (values()/indices()).

I can add support for as_strided, but it needs an `as_strided_inverse()` function. That will look really similar to the `as_strided_backward()` function in FunctionsManual.cpp, but it has some noticeable differences: we basically want an `as_strided_embed` for autograd and `as_strided_scatter` for functionalization. We also will probably need them to be primitives w.r.t to autograd, since the currently implementation for autograd uses view().copy_() calls that XLA won't be able to handle. I'm wondering if anyone has any objections, but otherwise I can make those change (which will require writing backward formulas for `as_strided_embed` and `as_strided_scatter`).

I did a bunch of manual testing that all looks pretty good, but it's definitely not fully tested. Ed pointed out that once XLA uses this pass (or at least once there's a POC), we can just run the existing xla view test suite. Hopefully that delay is okay - if it's not, maybe we can think about using OpInfos similar to how functorch uses them for testing.

Note: there's some duplication with autograd's view code. Every `{view}_inverse` implementation is really similar to the implementation for that view listed in `derivatives.yaml`. There are some major differences though:
* the autograd implementations over those backwards functions (like `permute_backwards()`, in `FunctionsManual.cpp`) internally call other view ops. For functoinalization, we want them to (eventually call `{view}_copy` operators).
* For view ops that take a subset of the original storage, like `slice/select/diagonal/as_strided()`, the autograd backward functions fill the "spaces" in the inverse call with zeroes. For functionalizations, we want to fill them with the value of `base` at those positions. It looks like this currently applies to 6 total ops (since we can ignore composites):
  * select
  * slice
  * diagonal
  * as_stridied
  * split
  * split_with_sizes
A nice end state would probably be for the autograd + functoinalization codegen to both look at the same yaml (either `derivatives.yaml`, or something else), and automatically generate the right thing. I didn't leave that in scope for this PR though.

**Current State + Next Steps**

There are a bunch of followups after this PR eventually lands. Roughly in order:
* Use the current pass to register problematic composite ops in functorch. Also, nested `functionalize()` calls aren't supported yet (I mostly just need to remove some debug asserts and test it).
* Work on freeing up dispatch key space in the by deduplicating the `{backend}`/`Autograd{backend}`/`Sparse{backend}`/`Quantized{backend}` keys
* Once we have more dispatch keys, split up this pass into 3 pieces - it's currently fused, and doesn't do the right thing for vulkan/XLA. Specifically, all of the `{view}` calls in the current pass's view-replay logic should turn into `{view}_copy` calls that vulkan/XLA know how to implement, and there will be separate passes for (a) removing mutations, and (b) turning `{view}_copy` calls back into `{view}` calls. For Vulkan, we eventually want a pass that ONLY removes aliasing and view calls, and doesn't remove mutations. We can also probably make the 2 new passes user dispatch keys to save dispatch key space, if they'll only be used by functorch anyway.
* Do more of a dive on perf for the vulkan/xla use cases. There are several areas to improve perf with varying levels of effort required. The simplest one that I'll probably do regardless is to codegen the out-of-place kernels instead of using a boxed fallback. Getting a POC working for xla will also be useful to test the view operator coverage.

**Example Codegen Output**

View Op:
```
::std::vector<at::Tensor> split_Tensor(c10::DispatchKeySet ks, const at::Tensor & self, int64_t split_size, int64_t dim) {

      auto self_ = at::functionalization::impl::unwrapFunctionalTensor(self);
      ::std::vector<at::Tensor> out;
      {
        at::AutoDispatchBelowFunctionalize guard;
        auto tmp_output = at::redispatch::split(ks & c10::after_func_keyset, self_, split_size, dim);
        out = at::functionalization::impl::wrapFunctionalTensor(tmp_output);
        // I'm fusing the [alias removal], [mutation removal], [add views back] passes together.
        // Later, we'll want to turn them into separate passes (since e.g. vulkan only cares about alias removal).
      }

      at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
        [split_size, dim](const at::Tensor& base, int64_t mutated_view_idx) -> at::Tensor {
          return base.split(split_size, dim)[mutated_view_idx];
        },
        [split_size, dim](const at::Tensor& base, const at::Tensor& mutated_view, int64_t mutated_view_idx) -> at::Tensor {
          return at::functionalization::impl::split_inverse(base, mutated_view, mutated_view_idx, split_size, dim);
        }
      );
      at::functionalization::impl::set_view_meta(out, self, view_meta);

      at::AutoDispatchDirectlyToNative native_guard;
      ::std::vector<at::Tensor> reference_tensor_output = at::native::split(self, split_size, dim);
      at::functionalization::impl::set_strides(out, reference_tensor_output);
      return out;

}
```

Mutation Op:
```
at::Tensor & add__Tensor(c10::DispatchKeySet ks, at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha) {

      at::functionalization::impl::sync(self);
      at::functionalization::impl::sync(other);
      auto self_ = at::functionalization::impl::unwrapFunctionalTensor(self);
      auto other_ = at::functionalization::impl::unwrapFunctionalTensor(other);
      at::Tensor tmp_output;
      {
          at::AutoDispatchBelowFunctionalize guard;
          // The functionalization pass explicitly doesn't pass out= parameters to the redispatch
          tmp_output = at::redispatch::add(
            ks & c10::after_func_keyset, self_, other_, alpha);
      }

      self.replace_(tmp_output);
      at::functionalization::impl::maybe_add_update(self);
      return self;
}
```

View + Mutation Op:
```
at::Tensor & transpose_(c10::DispatchKeySet ks, at::Tensor & self, int64_t dim0, int64_t dim1) {

      at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
        [dim0, dim1](const at::Tensor& base, int64_t mutated_view_idx) -> at::Tensor {
          return base.transpose(dim0, dim1);
        },
        [dim0, dim1](const at::Tensor& base, const at::Tensor& mutated_view, int64_t mutated_view_idx) -> at::Tensor {
          return at::functionalization::impl::transpose_inverse(base, mutated_view, dim0, dim1);
        }
      );
      at::functionalization::impl::mutate_view_meta(self, view_meta);
      // See  Note [Propagating strides in the functionalization pass]
      // Directly update the sizes/strides/storage_offset fields on self using the inplace call.
      // I need the guard because I don't want the at::native kernel to end up calling more functionalization/functorch kernels.
      // Its only job is to directly compute the output size/stride/storage_offset metadata.
      at::AutoDispatchDirectlyToNative native_guard;
      at::native::transpose_(self, dim0, dim1);
      return self;

}
```

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D31942093

Pulled By: bdhirsh

fbshipit-source-id: b95598dae35dd1842fa8b1d8d1448332f3afaadf
2021-10-28 10:51:17 -07:00
Kurt Mohler
5883523c1d Remove dtype from torch.Storage and use only torch.ByteStorage (#62030)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030

Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible

Fixes https://github.com/pytorch/pytorch/issues/47442

* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls.  `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
 To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.

Original pull request: https://github.com/pytorch/pytorch/pull/59671

Reviewed By: soulitzer, ngimel

Differential Revision: D29466819

Pulled By: ezyang

fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
2021-10-05 13:50:34 -07:00
Akifumi Imanishi
4d9fd8958b Support __rand__, __ror__ and __rxor__ (#59240)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58120.

This PR implements `torch.Tensor.{__rand__/__ror__/__rxor__}` for the compatibility with NumPy’s interface.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59240

Reviewed By: ngimel

Differential Revision: D29482304

Pulled By: mruberry

fbshipit-source-id: 13789202c1d8dddf8658a45381aeedcc31e2f603
2021-07-07 13:34:14 -07:00
Horace He
5fa4541c65 Make new_ones an operator (#58405)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58394

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58405

Reviewed By: HDCharles

Differential Revision: D28480075

Pulled By: Chillee

fbshipit-source-id: bd29399867e2a002a2f395554621761d3c701f68
2021-05-17 19:24:34 -07:00
lezcano
452569dffb cfloat and cdouble functions (#58137)
Summary:
This adds the methods `Tensor.cfloat()` and `Tensor.cdouble()`.

I was not able to find the tests for `.float()` functions. I'd be happy to add similar tests for these functions  once someone points me to them.

Fixes https://github.com/pytorch/pytorch/issues/56014

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58137

Reviewed By: ejguan

Differential Revision: D28412288

Pulled By: anjali411

fbshipit-source-id: ff3653cb3516bcb3d26a97b9ec3d314f1f42f83d
2021-05-13 21:13:37 -07:00
Edward Yang
6ec71ed4f9 Replace all direct cdata access with THPVariable_Unpack (#55799)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55799

I'm going to change the implementation of cdata soon so I need to
abstract over cdata access with a function.  Additionally, many
users are casting manually casting to THPVariable to access
the member so I can remove these unsafe casts in the client code
(the implementation, of course, is still doing an unsafe cast.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D27712130

Pulled By: ezyang

fbshipit-source-id: 95fcc013bf3913d67f2c634068eb5b3aab144cb3
2021-04-15 08:57:04 -07:00
Mike Ruberry
de7eeb7752 Removes nonzero method warning (#51618)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44284

https://github.com/pytorch/pytorch/pull/45413 incorrectly left this only partially fixed because it did not update the separate list of method signatures that were deprecated. This PR correctly fixes https://github.com/pytorch/pytorch/issues/44284. A test is added for the behavior, but until the WARN_ONCE flag is added it's toothless.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51618

Reviewed By: ngimel

Differential Revision: D26220181

Pulled By: mruberry

fbshipit-source-id: 397b47ac7e962d108d8fde0f3dc6468d6327d1c3
2021-02-04 17:43:43 -08:00
chengjun
4a8ef4525e Add new backend type for Intel heterogeneous computation platform. (#49786)
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.

https://github.com/pytorch/pytorch/issues/48246

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786

Reviewed By: mrshenli

Differential Revision: D25893962

Pulled By: ezyang

fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
2021-01-20 08:15:18 -08:00
Tugsbayasgalan Manlaibaatar
0c9fb4aff0 Disable tracer warning for slicing indices. (#50414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50414

If the index that is supplied from python is an integral type, it converts everything to int64_t which is traced correctly.

Test Plan:
new test case

Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D25930773

fbshipit-source-id: a3dfeb49df1394c5c8bea0de46038d2c549a0dc6
2021-01-19 14:15:50 -08:00
kshitij12345
2df249f0ab [fix] inplace remainder/% (#49390)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/49214

**BC-Breaking**
Before this PR, `%=` didn't actually do the operation inplace and returned a new tensor.
After this PR, `%=` operation is actually inplace and the modified input tensor is returned.

Before PR,
```python
>>> import torch
>>> a = torch.tensor([11,12,13])
>>> id(a)
139627966219328
>>> a %= 10
>>> id(a)
139627966219264
```

After PR,
```python
>>> import torch
>>> a = torch.tensor([11,12,13])
>>> id(a)
139804702425280
>>> a %= 10
>>> id(a)
139804702425280
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49390

Reviewed By: izdeby

Differential Revision: D25560423

Pulled By: zou3519

fbshipit-source-id: 2b92bfda260582aa4ac22c4025376295e51f854e
2020-12-22 07:30:03 -08:00
Taylor Robie
0639387ff1 move Tensor comparisons back to C (#48018)
Summary:
It seems that the machinery to handle comparison method in C rather than Python already exists, unless I'm missing something. (There is a wrapper for `TypeError_to_NotImplemented_`, and Python code gen handles `__torch_function__` which are the two things `_wrap_type_error_to_not_implemented` is doing) The performance change is quite stark:

```
import torch
from torch.utils.benchmark import Timer

global_dict = {
    "x": torch.ones((2, 2)),
    "y_scalar": torch.ones((1,)),
    "y_tensor": torch.ones((2, 1)),
}

for stmt in ("x == 1", "x == y_scalar", "x == y_tensor"):
    print(Timer(stmt, globals=global_dict).blocked_autorange(min_run_time=5), "\n")
```

### Before:
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f3d1289dc10>
x == 1
  Median: 12.86 us
  IQR:    0.65 us (12.55 to 13.20)
  387 measurements, 1000 runs per measurement, 1 thread

<torch.utils.benchmark.utils.common.Measurement object at 0x7f3d1289d1d0>
x == y_scalar
  Median: 6.03 us
  IQR:    0.33 us (5.91 to 6.24)
  820 measurements, 1000 runs per measurement, 1 thread

<torch.utils.benchmark.utils.common.Measurement object at 0x7f3d2b9e2050>
x == y_tensor
  Median: 6.34 us
  IQR:    0.33 us (6.16 to 6.49)
  790 measurements, 1000 runs per measurement, 1 thread
```

### After:
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdba2a16d0>
x == 1
  Median: 6.88 us
  IQR:    0.40 us (6.74 to 7.14)
  716 measurements, 1000 runs per measurement, 1 thread

<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdd2e07ed0>
x == y_scalar
  Median: 2.98 us
  IQR:    0.19 us (2.89 to 3.08)
  167 measurements, 10000 runs per measurement, 1 thread

<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdd33e4510>
x == y_tensor
  Median: 3.03 us
  IQR:    0.13 us (2.97 to 3.10)
  154 measurements, 10000 runs per measurement, 1 thread
```

There's still a fair bit of work left. Equivalent NumPy is about 6x faster than the new overhead, and PyTorch 0.4 is about 1.25 us across the board. (No scalar cliff.) But it's a start.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48018

Reviewed By: gchanan

Differential Revision: D25026257

Pulled By: robieta

fbshipit-source-id: 093b06a1277df25b4b7cc0d4e585b558937b10a1
2020-11-18 15:25:41 -08:00
Hameer Abbasi
d478605dec Fix classmethod override argument passing. (#47114)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47069.
Fixes https://github.com/pytorch/pytorch/issues/46824.
Fixes https://github.com/pytorch/pytorch/issues/47186

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47114

Reviewed By: ngimel

Differential Revision: D24649598

Pulled By: ezyang

fbshipit-source-id: af077affece7eceb1e4faf9c94d15484796b0f0e
2020-11-11 09:25:48 -08:00
Erjia Guan
f1ac63d324 Implement copysign (#46396)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46396

Related #38349

[numpy](https://numpy.org/doc/stable/reference/generated/numpy.copysign.html?highlight=copysign#numpy.copysign)
- No in-place function
- No method
- Optional output
- Available: byte, char, bool, int, short, long, float, double, half
- Integral promoted to float
- Not available: float/double complex

`c = np.copysign(a, b)`
|  a |  b |  c | a.grad |
| -1 | -1 | -1 |   1  |
| -0 | -1 | -0 |   0  |
|  0 | -1 | -0 |  0  |
|  1 | -1 | -1 |  -1  |
| -1 | -0 |  -1 |  1  |
| -0 | -0 |  0 |  0  |
|  0 | -0 |  0 |   0  |
|  1 | -0 |  -1 |   -1  |
| -1 |  0 |  1 |  -1  |
| -0 |  0 |  0 |  0  |
|  0 |  0 |  0 |   0  |
|  1 |  0 |  1 |   1  |
| -1 |  1 |  1 |  -1  |
| -0 |  1 |  0 |  0  |
|  0 |  1 |  0 |   0  |
|  1 |  1 |  1 |   1  |

This function becomes **non-differentiable** at `a=0` for any `b`. So, in my opinion, we may set the gradient for `a=0` to 0.

TODO:
- [x] test (cpu/gpu)
- [x] doc
- [x] ~kernel_vec~

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D24401366

Pulled By: ejguan

fbshipit-source-id: 3621c5ff74b185376a3705589983bb5197ab896d
2020-11-04 08:08:57 -08:00
Pritam Damania
2b221a9599 Remove PyCFunction casts as much as possible. (#46227)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227

Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.

The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704

Test Plan: waitforbuildbot

Reviewed By: albanD

Differential Revision: D24269435

fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
2020-10-20 15:01:51 -07:00
chengjun
5741de883a Define the record_stream method in native_functions.yaml (#44301)
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.

Fixes https://github.com/pytorch/pytorch/issues/36556

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301

Reviewed By: glaringlee

Differential Revision: D23763954

Pulled By: ezyang

fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
2020-10-13 09:15:22 -07:00
Gao, Xiang
768c2b0fb2 Fix THPVariable_float_scalar (#43842)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43842

Reviewed By: ailzhang

Differential Revision: D23426892

Pulled By: ezyang

fbshipit-source-id: 63318721fb3f4a57d417f9a87e57c74f6d4e6e18
2020-09-03 08:39:41 -07:00
Xiang Gao
4ef12be900 Add __complex__ (#43844)
Summary:
fixes https://github.com/pytorch/pytorch/issues/43833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43844

Reviewed By: ZolotukhinM

Differential Revision: D23422000

Pulled By: ngimel

fbshipit-source-id: ebc6a27a9b04c77c3977e6c184cefce9e817cc2f
2020-08-31 11:39:41 -07:00
Hameer Abbasi
75a15d3d01 Follow-up for pytorch/pytorch#37091. (#42806)
Summary:
This is a follow-up PR for https://github.com/pytorch/pytorch/issues/37091, fixing some of the quirks of that PR as that one was landed early to avoid merge conflicts.

This PR addresses the following action items:

- [x] Use error-handling macros instead of a `try`-`catch`.
- [x] Renamed and added comments to clarify the use of `HANDLED_FUNCTIONS_WRAPPERS` in tests. `HANDLED_FUNCTIONS_NAMESPACES` was already removed in the last PR as we had a way to test for methods.

This PR does NOT address the following action item, as it proved to be difficult:

- [ ] Define `__module__`  for whole API.

Single-line repro-er for why this is hard:

```python
>>> torch.Tensor.grad.__get__.__module__ = "torch.Tensor.grad"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'method-wrapper' object has no attribute '__module__'
```

Explanation: Methods  defined in C/properties don't always have a `__dict__` attribute or a mutable `__module__` slot for us to modify.

The documentation action items were addressed in the following commit, with the additional future task of adding the rendered RFCs to the documentation: 552ba37c05

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42806

Reviewed By: smessmer

Differential Revision: D23031501

Pulled By: ezyang

fbshipit-source-id: b781c97f7840b8838ede50a0017b4327f96bc98a
2020-08-12 09:11:33 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Mike Ruberry
4f761f325c Back out "[pytorch][PR] Removes dunder div"
Summary: NVIDIA's Apex is updating to no longer rely on this behavior, but we're reverting this Python2->Python3 update to unblock internal apex users.

Test Plan: Sandcaslte + OSS CI.

Reviewed By: ngimel

Differential Revision: D22146782

fbshipit-source-id: f9483d2cbf9dc3a469ad48a6c863edea3ae51070
2020-06-19 18:31:20 -07:00
Gregory Chanan
96057c0080 Fix missing deprecation warning for Tensor.nonzero(). (#40187)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40187

There were two issues:
1) The hand-written definition included an ambiguous default, which made the deprecated signature not selected.  This didn't match the handwritten torch.nonzero, now they do.
2) A parsing bug for empty argument lists meant the signature wasn't being marked as deprecated.

Test Plan: Imported from OSS

Differential Revision: D22118236

Pulled By: gchanan

fbshipit-source-id: a433ce9069fef28aea97cbd76f2adf5a285abd73
2020-06-19 09:24:48 -07:00
Mike Ruberry
9d588f7ce2 Removes dunder div (#39151)
Summary:
BC-breaking note:

If a user is using one of these dunders directly they will not longer be available. Users should update to Python3 compatible dunders.

Original PR note:

`__div__` (and `__idiv__` and `__rdiv__`) are no longer special dunders in Python3. This PR replaces them with the `__truediv__` (`__itrudediv__`, `__rtruediv__`) dunders, since we no longer support Python2.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39151

Differential Revision: D22075713

Pulled By: mruberry

fbshipit-source-id: d318b47b51f7cc4c3728b1606a34d81e49ba0fa1
2020-06-16 23:02:20 -07:00
Xiang Gao
d57ca73c53 Remove item and data_ptr for std::complex (#39838)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39838

Differential Revision: D22068251

Pulled By: ezyang

fbshipit-source-id: d1f0e1ff98290a139f1a080a9f7a1258943cd3ad
2020-06-16 11:13:54 -07:00
Kurt Mohler
f9eb8824f1 Remove datatype from Storage and StorageImpl (#38870)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38870

* Removed dtype data member from StorageImpl
* Removed any methods or method arguments in Storage/StorageImpl that deal with dtypes
* Update all callers of the changed API

Part of issue https://github.com/pytorch/pytorch/issues/33950
Original PR: https://github.com/pytorch/pytorch/pull/38038

Reviewed By: albanD

Differential Revision: D21549645

Pulled By: ezyang

fbshipit-source-id: 4289b356c55ff6b9530376a79343b99b540ee3de
2020-05-21 15:26:08 -07:00
Alban Desmaison
0f1669181a Add specific list of supported types in autograd (#38325)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38325

Test Plan: Imported from OSS

Differential Revision: D21668739

Pulled By: albanD

fbshipit-source-id: 2e6ebaa36e41a084aed0a8e1e16b6e37e36a1910
2020-05-21 08:28:06 -07:00
Mike Ruberry
819da00b3d Fixes floordiv dunder registrations (#38695)
Summary:
floordiv was missing a couple dunder registrations, which was causing __ifloordiv__ to not be called when it should. This adds the appropriate registrations and adds a test verifying that the inplace dunders are actually occuring inplace.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38695

Differential Revision: D21633980

Pulled By: mruberry

fbshipit-source-id: a423f5ec327cdc062fd6d9d56abd36fe44ac8198
2020-05-19 12:11:38 -07:00
anjali411
634282112b updated create input and add test methods and added a whitelist for complex (#37835)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37835

Test Plan: Imported from OSS

Differential Revision: D21434429

Pulled By: anjali411

fbshipit-source-id: 2590dfbae3e60c1a1019c96fe1c0b177ae088ccf
2020-05-06 19:40:25 -07:00
Basil Hosmer
ccfcf47531 Calls to Tensor::to pass MemoryFormat by TensorOptions (#34249)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34249

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20834164

Pulled By: bhosmer

fbshipit-source-id: 67586512df6b30869a8a77149fde6ff27beab81e
2020-04-03 16:28:17 -07:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Basil Hosmer
fb159b5236 Some work on eager op binding codegen (gen_python_functions.py) (#29986)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29986

Previously in addition to generating a python binding for each op,
we would generate an almost-trivial helper for each overload.
This PR eliminates the helpers, simplifying codegen logic a bit and
reducing the source-level indirection by a step.
Perf should be unchanged.

codegen diff: 1f2f07fb60

Note: in the interests of keeping the diff contained, there's only
some light cleanup here beyond what's necessary for the codegen changes.
Plan is to do some more substantial refactoring in followup PRs that
leave generated code unchanged.

Test Plan: Imported from OSS

Differential Revision: D18567980

Pulled By: bhosmer

fbshipit-source-id: eb9a81babb4489abd470842757af45580d4c9906
2020-01-30 00:29:53 -08:00
Pavel Belevich
62b06b9fae Rename TensorTypeId to DispatchKey (#32154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32154

TensorTypeId -> DispatchKey
	c10/core/TensorTypeId.h -> c10/core/DispatchKey.h
	c10/core/TensorTypeId.cpp -> c10/core/DispatchKey.cpp
	TensorTypeId::* -> DispatchKey::*
	TensorTypeId type_id -> DispatchKey dispatch_key
		type_id -> dispatch_key
	TensorTypeId::NumTensorIds -> DispatchKey::NumDispatchKeys
	RealTensorTypeId -> RealDispatchKey
TensorTypeSet -> DispatchKeySet
	TensorTypeIds -> DispatchKeys
	c10/core/TensorTypeSet.h -> c10/core/DispatchKeySet.h
	c10/core/TensorTypeSet.cpp -> c10/core/DispatchKeySet.cpp
	type_set() -> key_set()
	type_set_ -> key_set_
	typeSet -> keySet
ExcludeTensorTypeIdGuard -> ExcludeDispatchKeyGuard
IncludeTensorTypeIdGuard -> IncludeDispatchKeyGuard
LocalTensorTypeSet -> LocalDispatchKeySet
	c10/core/impl/LocalTensorTypeSet.h -> c10/core/impl/LocalDispatchKeySet.h
	c10/core/impl/LocalTensorTypeSet.cpp -> c10/core/impl/LocalDispatchKeySet.cpp
	tls_local_tensor_type_set -> tls_local_dispatch_key_set
	tls_is_tensor_type_id_excluded -> tls_is_dispatch_key_excluded
	tls_set_tensor_type_id_excluded -> tls_set_dispatch_key_excluded
	tls_is_tensor_type_id_included -> tls_is_dispatch_key_included
	tls_set_tensor_type_id_included -> tls_set_dispatch_key_included
MultiDispatchTensorTypeSet -> MultiDispatchKeySet
	multi_dispatch_tensor_type_set -> multi_dispatch_key_set
tensorTypeIdToBackend -> dispatchKeyToBackend
backendToTensorTypeId -> backendToDispatchKey
initForTensorTypeSet -> initForDispatchKeySet
inferred_type_set -> inferred_key_set
computeTensorTypeId -> computeDispatchKey
PODLocalTensorTypeSet raw_local_tensor_type_set -> PODLocalDispatchKeySet raw_local_dispatch_key_set
get_default_tensor_type_id -> get_default_dispatch_key
inferred_type_id -> inferred_dispatch_key
actual_type_id -> actual_dispatch_key
typeSetToDispatchKey_ -> dispatchKeySetToDispatchKey_
get_type_id() -> get_dispatch_key()
legacyExtractTypeId -> legacyExtractDispatchKey
extractTypeId -> extractDispatchKey

Test Plan: Imported from OSS

Differential Revision: D19398900

Pulled By: pbelevich

fbshipit-source-id: 234ad19f93d33e00201b61e153b740a339035776
2020-01-15 11:16:08 -08:00
Vitaly Fedyunin
66f2bba852 Adding function to convert Module to channels last
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28991

Test Plan: Imported from OSS

Differential Revision: D18430810

Pulled By: VitalyFedyunin

fbshipit-source-id: 0693d4e31fc6f9831722c29fc83517f16ddfc028
2019-12-12 11:38:35 -08:00
Richard Zou
bcb0bb7e0e Remove unnecessary ATen/core/EnableNamedTensor.h (#31117)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117

After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.

I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```

Test Plan: - wait for CI

Differential Revision: D18934952

Pulled By: zou3519

fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
2019-12-12 09:53:07 -08:00
hxia11
06c7420fa2 Raise error if a block can not be found from a CUDA tensor (#30870)
Summary:
After several discussions, we agreed not to put any extra safety check for recordStream as either the check will cause failures in certain scenarios or there is no need to throw for user errors.

As a summary, it simply does what is described in https://github.com/pytorch/pytorch/issues/27405, check if a tensor is indeed allocated by a CUDACachingAllocator instance, if it is, then throw internal error if a block can not be retrieved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30870

Differential Revision: D18851669

Pulled By: yxia11

fbshipit-source-id: c2f01798cd24f1fd0f35db8764057d5d333dab95
2019-12-10 08:04:00 -08:00
Richard Zou
e05ee4c421 Remove BUILD_NAMEDTENSOR macros (#30894)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894

This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.

Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros

Reasons for not removing the macros:
- potential for feature flagging

Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.

In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.

[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.

[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.

Test Plan: - wait for CI

Differential Revision: D18858543

Pulled By: zou3519

fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
2019-12-10 07:54:05 -08:00
Nathan Goldbaum
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
Edward Yang
1111a6b810 Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL (#30274)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/29095
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30274

Differential Revision: D18762293

Pulled By: ezyang

fbshipit-source-id: d3d50c2dd12bcb678ab25fa708eb6587cc4b66f9
2019-12-02 12:19:58 -08:00
Elias Ellison
976d91d30a Comment on a set of ops bound at the python layer
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30420

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D18713999

Pulled By: eellison

fbshipit-source-id: 3a8d6e4431cbfe6a78ca047217c1c53c47403841
2019-11-26 17:38:04 -08:00
Elias Ellison
634f370c63 Add comment to ops bound at python layer
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30419

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D18714000

Pulled By: eellison

fbshipit-source-id: 22ccb941b2db24031921f378c600e68fe70e1346
2019-11-26 17:37:59 -08:00
Mike Ruberry
eff4c4d7c1 Revert D18301806: Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL
Test Plan: revert-hammer

Differential Revision:
D18301806

Original commit changeset: 03da6a26c41e

fbshipit-source-id: c1324ee8d154e7e16f5dd4f1cf3625aaa566cd39
2019-11-21 14:50:07 -08:00
Alan Du
f4b9690f2d Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL (#29095)
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.

Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095

Differential Revision: D18301806

Pulled By: ezyang

fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
2019-11-21 13:44:40 -08:00
Pavel Belevich
46f96d1538 C++ API parity: at::Tensor::requires_grad_
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26332

Test Plan: Imported from OSS

Differential Revision: D17427575

Pulled By: pbelevich

fbshipit-source-id: 5500169a4fa0ef9cc2a7272e13b6e2d89df09260
2019-10-24 13:24:18 -07:00
Vitaly Fedyunin
951dd03037 Add memory format support to typecasting shortcuts byte,char,double,bool,half,int,long,short,float,bfloat16 (#27228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27228

Adds memory_format keyword argument (positional for cpp).

'Preserve' behavior now follows next rules:
1) If tensor is non-overlapping and dense - output tensor will have the same strides as input tensor.
2) If not (1) and tensor is stored in the channels last format, output tensor going to have channels last format.
3) Output tensor is going to be contiguous in all other cases.

 ---
Dense tensor is the tensor that store values in a contiguous block of memory.
Non-overlapping tensor is the tensor in which elements occupy individual non-repetitive memory.

Test Plan: Imported from OSS

Differential Revision: D17980315

Pulled By: VitalyFedyunin

fbshipit-source-id: fd5615621bc4968aa4ef2a26430c492c552ed671
2019-10-17 09:16:25 -07:00
Vitaly Fedyunin
15df371934 Add memory format support to typecasting shortcuts byte,char,double,bool,half,int,long,short,float,bfloat16 (#27228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27228

Adds memory_format keyword argument (positional for cpp).

'Preserve' behavior now follows next rules:
1) If tensor is non-overlapping and dense - output tensor will have the same strides as input tensor.
2) If not (1) and tensor is stored in the channels last format, output tensor going to have channels last format.
3) Output tensor is going to be contiguous in all other cases.

 ---
Dense tensor is the tensor that store values in a contiguous block of memory.
Non-overlapping tensor is the tensor in which elements occupy individual non-repetitive memory.

Test Plan: Imported from OSS

Differential Revision: D17980128

Pulled By: VitalyFedyunin

fbshipit-source-id: b2646bab72c4475b7a82bb271d204a9d96d28bd4
2019-10-17 09:16:21 -07:00
Vitaly Fedyunin
d39ab0312a Add memory_format support to and type operators (#27107)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27107

Adds memory_format keyword argument (positional for cpp).

'Preserve' behavior now follows next rules:
1) If tensor is non-overlapping and dense - output tensor will have the same strides as input tensor.
2) If not (1) and tensor is stored in the channels last format, output tensor going to have channels last format.
3) Output tensor is going to be contiguous in all other cases.

 ---
Dense tensor is the tensor that store values in a contiguous block of memory.
Non-overlapping tensor is the tensor in which elements occupy individual non-repetitive memory.

Test Plan: Imported from OSS

Differential Revision: D17931062

Pulled By: VitalyFedyunin

fbshipit-source-id: 2c5dd3dd05bf58a9a29f25562cd45190b009c3f9
2019-10-15 12:55:56 -07:00
Edward Yang
013ca32730 Devirtualize numel() (#27294)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27294

Fixes #27291

I'm a little annoyed that I have to reintroduce manual binding code.  But it's
probably not a good idea to teach the codegen how to do fastpath functions
(is it?)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17763486

Pulled By: ezyang

fbshipit-source-id: 5793b53e2db80b044e57faae325a95c649d9d459
2019-10-09 11:43:50 -07:00
Heungsub Hans Lee
c1c176d91b record_stream() for shifted view tensors (#27371)
Summary:
Issue: https://github.com/pytorch/pytorch/issues/27366

The address of a view tensor might be shifted from the head of the storage.

```python
>>> x = torch.rand(10, 10, device=0, requires_grad=True)
>>> y = x[2:]
>>> hex(x.data_ptr())
'0x7f1b15c00000'
>>> hex(y.data_ptr())
'0x7f1b15c00050'
```

Currently, `Tensor.record_stream()` silently ignores shifted view tensors, because `CUDACachingAllocator` cannot find the block from the shifted address.

```c++
void recordStream(void* ptr, cuda::CUDAStream stream)
{
  if (ptr) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    Block* block = find_allocated_block(ptr);
    if (block) {
      ...
    }
    // 'block' is nullptr if 'ptr' is shifted.
  }
}
```

So we cannot protect shifted view tensor which is used to compute or copy in an arbitrary stream against unexpected reallocation. Once we call `record_stream()` on a tensor, our intention is to protect the storage behind the tensor against reallocation until all works in the stream finish. This rule should be consistent regardless of the type of tensors including the view.

We can retrieve the head of the address from any types of tensors by `tensor.storage().data_ptr()`. Hence, I've thought it's better to pass to `recordStream()` rather than `tensor.data_ptr()` for consistent behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27371

Reviewed By: ezyang

Differential Revision: D17768558

Pulled By: albanD

fbshipit-source-id: 7705f52b0177625168edb6f71c07a029df471bc5
2019-10-08 12:31:26 -07:00