Ref #70924
This addresses part 1 of the issue, allowing `torch.squeeze` to be
passed a tuple of dimensions. e.g.
```python
x.squeeze(0).squeeze(0)
```
can now be written
```python
x.squeeze((0, 1))
```
(assuming x has at least 2 dimensions)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89017
Approved by: https://github.com/albanD
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.
The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.
`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR fixes https://github.com/pytorch/pytorch/issues/90833
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR also fixes https://github.com/pytorch/pytorch/issues/90833
# Main issue
*The following content is outdated after merging the PRs in this ghstack but kept for the record.*
The importance of this feature is that when enabling the invariants checks by default, say, via
<details>
```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:
# Populate magic methods on SymInt and SymFloat
import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```
</details>
a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:
```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"
RuntimeError: CUDA error: device-side assert triggered
RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.
RuntimeError: expected col_indices to be a strided and contiguous tensor
RuntimeError: expected row_indices to be a strided and contiguous tensor
RuntimeError: expected values to be a strided and contiguous tensor
RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered
RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
Ref #70924
This addresses part 1 of the issue, allowing `torch.squeeze` to be
passed a tuple of dimensions. e.g.
```python
x.squeeze(0).squeeze(0)
```
can now be written
```python
x.squeeze((0, 1))
```
(assuming x has at least 2 dimensions)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89017
Approved by: https://github.com/albanD
Fixes#91107
Added `softmax` docs in
- `pytorch/torch/_tensor_docs.py`
- `pytorch/torch/_torch_docs.py `
- `pytorch/docs/XXX.rst` files. Here XXX represents all those files where I made the change
Although I have added `softmax` in `docs` directory, I was not sure which files/folders required the edits so there could be issues
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91292
Approved by: https://github.com/lezcano
Fixes#91107
Added `softmax` docs in
- `pytorch/torch/_tensor_docs.py`
- `pytorch/torch/_torch_docs.py `
- `pytorch/docs/XXX.rst` files. Here XXX represents all those files where I made the change
Although I have added `softmax` in `docs` directory, I was not sure which files/folders required the edits so there could be issues
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91292
Approved by: https://github.com/lezcano
The documentation of `torch.rand` was missing the `generator` keyword argument in the function signature. However, the argument is explained in the documentation and `torch.rand` accepts that argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90071
Approved by: https://github.com/janeyx99