Notable new features for SDPA operators on AMD systems from AOTriton 0.8b:
1. Nestedtensor support;
2. MQA/GQA support;
3. Restore Efficient attention support for causal=True and seqlen_q != seqlen_k cases;
+ The kernel should use top-left alignment, bottom right alignment will be added later
4. Move gfx1100 (RX7900/W7800/W7900) out of experimental support status.
However, users are strongly recommended to update to ROCM 6.2.4, notably for
its firmware updates.
Related unit tests are enabled as well.
Notable related changes from AOTriton 0.8b:
1. AOTriton 0.8b moves the GPU kernel out of libaotriton.so to a separate directory `aotriton.images`;
2. LZMA replaces ZSTD as GPU kernel compression algorithm for better compression ratio: aotriton0.8b (.so + aotriton.images take 350MB) compared to aotriton0.7b .so: 800MB
3. The compression cannot be disabled now, and `liblzma` is hard run-time dependency.
+ Should not be a problem, since `lzma` is part of Python Standard Library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140172
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily
Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
Summary:
In this diff we implement a way to ensure the internal thrift schema from cfgr (configerator/structs/caffe2/torch/export/schema.thrift) and the schema in OSS (torch/_export/serde/schema.thrift) are in sync, by adding a unittest to reflect on the type names and fields from each schema and compare them field by field.
When we detect new fields/types from torch/_export/serde/schema.thrift, there'll be a test failure on the trunk and the error message hints people to add the missing field/type to the thrift schema from cfgr, so that they are always in sync in practice.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_thrift_schema_in_sync
Differential Revision: D66716834
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141989
Approved by: https://github.com/yiming0416
## Summary
We are currently [updating](https://github.com/conda-forge/pytorch-cpu-feedstock/pull/277) the [`conda-forge::pytorch`](https://anaconda.org/conda-forge/pytorch) package to version 2.5.0. This update includes a new dependency, the third_party/NVTX submodule. However, like other package management frameworks (e.g., apt), conda-forge prefers using system-installed packages instead of vendor-provided third-party packages.
This pull request aims to add an option, `USE_SYSTEM_NVTX`, to select whether to use the vendored nvtx or the system-installed one, with the default being the vendored one (which is the current behavior).
## Test Plan
The `USE_SYSTEM_NVTX` option is tested by building the `conda-forge::pytorch` package with the change applied as a [patch](cd1d2464dd/recipe/patches/0005-Use-system-nvtx3.patch).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138287
Approved by: https://github.com/albanD
**Motivation:**
In Pytorch, Aten vectorization supports multiple platforms, including x86 and Arm, as well as multiple data types. It provides a generic implementation of Vector (Vec) type that allows the programmer to write code packing various primitives (such as floats) within 256bit & 512bits registers. It can be extended to support other ISAs easily by adding more VecISA sub-classes.
**Reference Link:** https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cpu/vec
**This PR:**
* Our goal with this contribution is to add support for SVE backend for Vec in the Aten vectorization for CPU backend which can be benefitted by any ARM architecture supported CPU's that supports SVE.
* More about SVE ISA for ARM: [https://developer.arm.com/Architectures/Scalable Vector Extensions](https://developer.arm.com/Architectures/Scalable%20Vector%20Extensions)
* We are using the ARM C Language Extensions for SVE (https://developer.arm.com/documentation/102699/0100/Optimizing-with-intrinsics ) to accelerate performance for various operators in the SVE backend for Vec.
* Currently we are adding support only for SVE ISA with the vector length of 256 bits (SVE 256). In future, we plan to extend this SVE support for other vector lengths as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119571
Approved by: https://github.com/malfet, https://github.com/snadampal
Co-authored-by: Divya Kotadiya <divya.kotadiya@fujitsu.com>
* Added a cpp loader, AOTIModelPackageLoader, which can load the .pt2, build the .so, and create a runner. The python-facing API is that users can directly call the `run` function, whereas in cpp users can directly access the `runner_` if they are more familiar with that. I couldn't figure out how to bind the `get_runner()` function to python...
* Added a new config, `aot_inductor.package_cpp_only` which will **not** package the so. This means that whenever the package is loaded, we will need to build the so. This is turned off by default so that new environments do not need to rebuild their so. The `package_cpp_only` is a feature which torchchat intends to use to provide flexibility to users.
* Added a new config, `aot_inductor.metadata` which stores user-provided metadata, serialized to the pt2 as a json file. It also stores the device used when exporting, "cuda" or "cpu", so that during load time, we can use that data to determine which AOTIModelContainerRunner to use. The metadata can be accessed through `loader.get_metadata()`. TODO is to move this metadata to the toplevel `package_aoti` function so that we can remove the metadata as a config.
* Separated out `package_aoti` as a standalone function, instead of it automatically being called in inductor. This is to prepare for the case where users will compile multiple models, and want to bundle it in one package. The specific use case is in torchchat, where we want to package the separately-exported encoder and decoder layers. An example of how to use this is in `test_multiple_methods`.
* `load_package` will load a singular model, given the model name.
* The loader doesn't support windows for now, I think I need to add some more casing to make the build commands work on windows?
Differential Revision: [D62329906](https://our.internmc.facebook.com/intern/diff/D62329906)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135374
Approved by: https://github.com/desertfire, https://github.com/malfet
This PR switches to cuDSS library and has the same purpose of #127692, which is to add Sparse CSR tensor support to linalg.solve.
Fixes#69538
Minimum example of usage:
```
import torch
if __name__ == '__main__':
spd = torch.rand(4, 3)
A = spd.T @ spd
b = torch.rand(3).to(torch.float64).cuda()
A = A.to_sparse_csr().to(torch.float64).cuda()
x = torch.linalg.solve(A, b)
print((A @ x - b).norm())
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129856
Approved by: https://github.com/amjames, https://github.com/lezcano, https://github.com/huydhn
Co-authored-by: Zihang Fang <zhfang1108@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Another attempt to update NVTX to NVTX3. We now avoid changing NVTX header inclusion of existing code. The advantage of NVTX3 over NVTX is that it is a header-only library so that linking with NVTX3 can greatly simplify our CMake and other building scripts for finding libraries in user environments. In addition, NVTX are indeed still present in the latest CUDA versions, but they're no longer a compiled library: It's now a header-only library. That's why there isn't a .lib file anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109843
Approved by: https://github.com/peterbell10, https://github.com/eqy
Co-authored-by: Ivan Zaitsev <108101595+izaitsevfb@users.noreply.github.com>
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
ghstack dependencies: #130895
------
The opposite of #130836. Pin `sympy >= 1.13.0` for Python >= 3.9 and `sympy == 1.12.1` for Python 3.8.
- #130836
See the PR description of #130836 for more details.
`sympy` 1.13.0 introduces some breaking changes which break our tests. More specifically:
- Ref [Backwards compatibility breaks and deprecations](https://github.com/sympy/sympy/wiki/release-notes-for-1.13.0#backwards-compatibility-breaks-and-deprecations)
> BREAKING CHANGE: Float and Integer/Rational no longer compare equal with a == b. From now on Float(2.0) != Integer(2). Previously expressions involving Float would compare unequal e.g. x*2.0 != x*2 but an individual Float would compare equal to an Integer. In SymPy 1.7 a Float will always compare unequal to an Integer even if they have the same "value". Use sympy.numbers.int_valued(number) to test if a number is a concrete number with no decimal part. ([#25614](https://github.com/sympy/sympy/pull/25614) by [@smichr](https://github.com/smichr))
`sympy >= 1.13.0` is required to enable Python 3.13 support. This should be part of #130689.
- #130689
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130895
Approved by: https://github.com/ezyang
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
Removes extraneous .a, .so, and .py files from the split build. From here we can also clean up the builder script which produces the binary to do this. That pr is https://github.com/pytorch/builder/pull/1912
Verification:
The built wheel with BUILD_LIBTORCH_WHL=1 has the following files only (with .a, .so, and .py extensions)
```
sahanp@devgpu086 ~/p/dist (viable/strict)> pwd (pytorch-3.10)
/home/sahanp/pytorch/dist
sahanp@devgpu086 ~/p/dist (viable/strict)> find . -type f \( -name "*.py" -o -name "*.a" -o -name "*.so" \) (pytorch-3.10)
./torch/__init__.py
./torch/lib/libbackend_with_compiler.so
./torch/lib/libc10.so
./torch/lib/libjitbackend_test.so
./torch/lib/libtorch.so
./torch/lib/libtorch_cpu.so
./torch/lib/libtorch_global_deps.so
./torch/lib/libtorchbind_test.so
sahanp@devgpu086 ~/p/dist (viable/strict)>
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130053
Approved by: https://github.com/atalman
This PR removes the second separate package we were using for the libtorch wheel.
In terms of testing that this works we will look use the PRs above this in the stack.
As for sanity checking these are the wheels that are produced by running
```
python setup.py clean && BUILD_LIBTORCH_WHL=1 with-proxy python setup.py bdist_whee
l && BUILD_PYTHON_ONLY=1 with-proxy python setup.py bdist_wheel --cmake
```
```
sahanp@devgpu086 ~/pytorch ((5f15e171…))> ls -al dist/ (pytorch-3.10)
total 677236
drwxr-xr-x 1 sahanp users 188 Jun 4 12:19 ./
drwxr-xr-x 1 sahanp users 1696 Jun 4 12:59 ../
-rw-r--r-- 1 sahanp users 81405742 Jun 4 12:19 torch-2.4.0a0+gitca0a73c-cp310-cp310-linux_x86_64.whl
-rw-r--r-- 1 sahanp users 612076919 Jun 4 12:19 libtorch-2.4.0a0+gitca0a73c-py3-none-any.whl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127934
Approved by: https://github.com/atalman