Commit Graph

43 Commits

Author SHA1 Message Date
Ivan Yashchuk
7e7694b661 Add nvprims.var_mean (#83508)
This PR adds nvfuser-specific primitive - `var_mean`.
Interpretation `torch.var_mean` -> `torch.ops.nvprims.var_mean` is handled by `TorchRefsNvfuserCapabilityMode` context manager.

I moved some helper code from `_prims/__init__.py` to `_prims_common`. Correctness is tested with OpInfo tests (see `PythonRefInfo("ops.nvprims.var_mean"`).

Layer norm reference now uses `torch.var_mean` instead of `torch._refs.var_mean` to allow interception. Here's a simple comparison of performance with this PR and master (on 3080ti):
```py
import torch
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute

def func(a):
    return torch.native_layer_norm(a, (1024,), None, None, 1e-6)

a = torch.randn(10, 512, 1024, dtype=torch.float16, device="cuda")

with TorchRefsNvfuserCapabilityMode():
    gm = make_fx(func)(a)

for _ in range(10):
    execute(gm, a, executor="strictly_nvfuser");
```
run with `PYTORCH_NVFUSER_DUMP=dump_eff_bandwidth python script.py`
```py
# WITH THIS PR
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.033792 ms, achieved: 621.818 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.032608 ms, achieved: 644.396 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.03072 ms, achieved: 684 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s

# ON MASTER
# kernel1 run in 0.05632 ms, achieved: 373.091 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043808 ms, achieved: 479.649 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
```
So this PR gives about 35% improvement in performance using nvfuser executor with this specific normalized shape.

Also this PR fixes https://github.com/pytorch/pytorch/issues/83506 (see the change in `torch/csrc/jit/python/pybind_utils.cpp`).

Ref. https://github.com/pytorch/pytorch/issues/80187

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83508
Approved by: https://github.com/ngimel
2022-08-27 09:05:20 +00:00
PyTorch MergeBot
c7edcd6968 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 9790d90e4b.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to Breaks internal builds, see D39076487
2022-08-27 01:23:17 +00:00
Edward Z. Yang
9790d90e4b Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-26 01:35:40 +00:00
PyTorch MergeBot
a7edf71360 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 8fae7027b3.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to breaking internal builds, see https://www.internalfb.com/diff/D38984222
2022-08-25 00:49:40 +00:00
Edward Z. Yang
8fae7027b3 Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-23 22:04:07 +00:00
Nikolay Korovaiko
5b621205f4 Revert "Revert "adding a custom caster for c10::SymInt (#82692)"" (#83223)
This should fix the MacOS build errors and reland #82692
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83223
Approved by: https://github.com/albanD
2022-08-12 00:46:50 +00:00
PyTorch MergeBot
daeea7d2c3 Revert "adding a custom caster for c10::SymInt (#82692)"
This reverts commit dee63f4f7b.

Reverted https://github.com/pytorch/pytorch/pull/82692 on behalf of https://github.com/seemethere due to Broke internal builds, see [logs](https://www.internalfb.com/intern/sandcastle/job/4503600373141339/insights)
2022-08-09 22:17:41 +00:00
Nikolay Korovaiko
dee63f4f7b adding a custom caster for c10::SymInt (#82692)
### Description
Adding a custom caster for `c10::SymInt`. This simplifies handling of c10::SymInt on C++/Pytorch boundary. Namely, removing if statements to handle the union nature (e.g. SymIntNode, int) of c10::SymInt.

### Issue
<!-- Link to Issue ticket or RFP -->

### Testing
<!-- How did you test your change? -->

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82692
Approved by: https://github.com/ezyang
2022-08-08 21:40:53 +00:00
Edward Z. Yang
fd5ac1e6b5 Rename SymbolicIntNode to SymIntNodeImpl (#82350)
Done via

```
git grep -l 'SymbolicIntNode' | xargs sed -i 's/SymbolicIntNode/SymIntNodeImpl/g'
```

Reasoning for the change:

* Sym is shorter than Symbolic, and consistent with SymInt
* You usually will deal in shared_ptr<...>, so we're going to
  reserve the shorter name (SymIntNode) for the shared pointer.

But I don't want to update the Python name, so afterwards I ran

```
 git grep -l _C.SymIntNodeImpl | xargs sed -i 's/_C.SymIntNodeImpl/_C.SymIntNode/'
```

and manually fixed up the binding code

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82350
Approved by: https://github.com/Krovatkin
2022-07-28 18:27:45 +00:00
Edward Z. Yang
7e60e315da Add support for Generator conversion to/from IValue (#81697)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81697
Approved by: https://github.com/anjali411
2022-07-19 16:50:10 +00:00
Edward Z. Yang
421f04dd02 Only allow numbers as tensors if operator was explicitly allowlisted so (#80587)
Fixes https://github.com/pytorch/pytorch/issues/80508

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80587
Approved by: https://github.com/ngimel
2022-06-30 18:59:38 +00:00
Horace He
7850a328b4 Revert "Revert "parse pysymints to IValues (#80066)"" (#80419)
This is a reland of https://github.com/pytorch/pytorch/pull/80066 with the relative path changed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80419
Approved by: https://github.com/Krovatkin
2022-06-28 17:21:34 +00:00
PyTorch MergeBot
0322ecc3fd Revert "parse pysymints to IValues (#80066)"
This reverts commit f532b3a619.

Reverted https://github.com/pytorch/pytorch/pull/80066 on behalf of https://github.com/seemethere due to Uses relative includes which causes internal builds to fail
2022-06-24 20:15:09 +00:00
Nikolay Korovaiko
f532b3a619 parse pysymints to IValues (#80066)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80066
Approved by: https://github.com/Chillee
2022-06-23 19:51:08 +00:00
Yanan Cao (PyTorch)
67badf0d5c Add missing QSCheme IValue conversion logic (#78862)
Differential Revision: D36913736

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78862
Approved by: https://github.com/suo
2022-06-07 08:34:17 +00:00
Edward Z. Yang
0a14a4c280 Register prims as operators.
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python.  You now need to give a full
schema string for your prims.  The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117

Approved by: https://github.com/mruberry, https://github.com/albanD
2022-05-11 16:38:14 +00:00
Edward Z. Yang
f2eed9400d Register PrimTorch refs as decompositions.
For the most part, PrimTorch refs have the same signature as their
ATen equivalents.  I modify most PrimTorch refs to register themselves
as decompositions, using the prim name they wrap to find the aten name
(except for a few cases where the prim/aten names mismatch).  There are
some exclusions, falling into one of two categories:

- The torch equivalent was already implemented as a CompositeImplicitAutograd
  decomposition in C++

- The ref doesn't support enough features (e.g., the real deal has more
  kwargs / overloads than are currently implemented)

PrimTorch refs are written as a single function that supports all
overloads, and this style is convenient for cases where we have a bundle
of overloads for what morally is a single overload with a Union type
on an argument (which we ought to have supported in
native_functions.yaml but blah); to support registering a single decomp
for all the overloads, we modify register_decomposition to register
to ALL overloads if you pass it an overload packet.  This is technically
BC breaking but no tests started failing because of it.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76835

Approved by: https://github.com/Chillee, https://github.com/mruberry
2022-05-06 20:11:45 +00:00
Nikolay Korovaiko
5177f95d21 Introducing SymInt to Pytorch (for tracing size arithmetic) (master rebase) (#74861)
Summary:
This PR introduces `SymInt` type to Pytorch which will be used by LTC and AOTAutograd for tracing size arithmetic and tests.
`SymInt` is a C++ union structure [int64_t, SymbolicIntNode*] that wraps around an int64_t field where the value of the field could be an index into a list of `shared_ptr<SymbolicIntNode>` or a real int.
This PR doesn't add any support for actually tracing symbolic ints. i.e. data_ for now can only contain real ints.

```
Goal 1: just to show we can add a type to PyTorch core. (wraps int) LANDEABLE
Finalize the naming - symint
Want the name to be short
Does invoke “size” - NO
SInt/SymInt/SymbolicInt
SInt could mean signed int
sym_int or symint or SymInt (originally it was “int”; capitalized implies object semantics, whereas lowercase implies value semantics)
JIT schema - symint
C++ - symint
```

See more details here: https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8 (d843f63f2a)YLw-jxEw

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74861

Reviewed By: qihqi, ngimel

Differential Revision: D35226230

Pulled By: Krovatkin

fbshipit-source-id: 34acf342bd50fcaa4d8d5dd49c2fd6a98823a5b3
(cherry picked from commit 218643f63ef181cabb92d13a6e837eb64f2dda3c)
2022-03-31 21:59:59 +00:00
Edward Yang
2f90c82265 Get rid of TorchScript sparse tensor is experimental warning. (#73874)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73874

These get triggered when you are doing normal stuff with sparse
tensors and `__torch_dispatch__`, but it all works fine.  No need
to warn.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D34707395

Pulled By: ezyang

fbshipit-source-id: 3492c03abb1df1e925af3855dbf772784405d8c1
(cherry picked from commit 95e5981b304abf0367740906c238b29cadeea41c)
2022-03-09 15:45:24 +00:00
Can Balioglu
80b19c4c8c Enable Python bindings for UntypedStorage (#68945)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945

This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110

Test Plan: Run the existing unit and integration tests.

Reviewed By: albanD

Differential Revision: D32676505

fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
2022-01-20 02:11:34 +00:00
Zhengxu Chen
649dda9fee [jit] Implement DynamicType for TorchScript runtime. (#68136)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68136

DynamicType is an extension to existing server JIT types. Today using normal server types on Edge is a bit problematic because in embedded environments we don't need the full spectrum of types but we still build with these unneeded dependencies.

Is it possible to just get rid of unneeded JIT types from Edge builds? It's not easy to do so at this moment. For example, on Edge we don't support Union type, but we have to pull in the dependency of Union type because Optional type is being supported which inherits from Union type, so Union type has to be included in the build. Although we could split Union type and Optional type, it could be argued that the root cause is every time we use anything inheriting from `c10::Type`, we don't have the direct evidence of how much dependency we pull in, because we do virtual calls and we don't know what exactly we're calling with server JIT types. If we don't know, it's highly possible that the linker doesn't know either so it cannot effectively strip unused methods.

To address this problem, one option is to implement a separate `DynamicType` which has simpler behavior and doesn't store different types as different symbols in binary but rather raw data (or "tag"). This could increase the binary size by several KBs, so I included several binary size reductions in the same stack, hoping at least we don't regress the binary size.

Currently `DynamicType` inherits from `c10::Type` because I want to reduce the migration cost of `DynamicType` by making it interfacing with existing server JIT types. In the future `DynamicType` should be implemented as a separate class without relying on `c10::Type` to make things both simpler and leaner.
ghstack-source-id: 146670522

Test Plan: in the next diff.

Reviewed By: VitalyFedyunin

Differential Revision: D32264615

fbshipit-source-id: 180eb0998a14eacc1d8b28db39870d84fcc17d5b
2022-01-07 11:23:07 -08:00
Alban Desmaison
28c519961f Follow the undefined Tensor <-> None rule better in torch dispatch (#67793)
Summary:
As per title. This in particular allows to more easily override backward function for which the underlying backend returns `None`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67793

Reviewed By: zou3519

Differential Revision: D32242962

Pulled By: albanD

fbshipit-source-id: 6e114def90ee9499161e1303d301ba7fd003ff89
2021-12-02 07:46:56 -08:00
Scott Wolchok
2d885ab73d [jit] Reduce refcounting of Types (#65345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345

FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165

Test Plan:
CI

perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.

Reviewed By: hlu1

Differential Revision: D31027361

fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
2021-10-08 09:03:04 -07:00
Ansley Ussery
6831d8e379 Support Union in TorchScript (#64234)
Summary:
This PR is created to replace https://github.com/pytorch/pytorch/pull/53180 PR stack, which has all the review discussions. Reason for needing a replacement is due to a messy Sandcastle issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64234

Reviewed By: gmagogsfm

Differential Revision: D30656444

Pulled By: ansley

fbshipit-source-id: 77536c8bcc88162e2c72636026ca3c16891d669a
2021-09-03 06:12:24 -07:00
Richard Barnes
9e77113e85 irange-ify 11 (#62121)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62121

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29879701

fbshipit-source-id: 5c51879c88fa6a5790db241c8b33ec0dc4b177ca
2021-07-28 13:32:09 -07:00
Meghan Lele
5144381b1d [pytorch][JIT] Widen exception caught by ScriptList casting (#61520)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61520

This commit widens the exception caught by the try-catch block that checks if
an object passed to a scripted function is a `ScriptList`. It turns out that
there are internal tests that do not throw a `py::cast_error` so catching only
that is not sufficient.

Test Plan: Ran the failing tests in T94889011.

Reviewed By: Chillee

Differential Revision: D29560815

fbshipit-source-id: 442258f8997146d833a9d5db923e1f6359f2bfdd
2021-07-12 23:20:58 -07:00
Meghan Lele
4a2e8b53bb [JIT] Add torch._C.ScriptList` (#52832)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52832

**Summary**
This commit adds `torch._C.ScriptList`, a list type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made in TorchScript to instances of `torch._C.ScriptList`
are visible in Python even when it is not returned from the function.

`torch._C.ScriptList` is implemented using a modified version of pybind's
`stl_bind.h`-style bindings attached to `ScriptList` and `ScriptListIterator`,
wrapper classes around `c10::impl::GenericList` and
`c10::impl::GenericList::iterator`. These bindings allow instances of
`torch._C.ScriptList` to be used as if it were a
regular `list` in Python. Reference semantics are achieved by simply
retrieving the `IValue` contained in `ScriptList` in `toIValue` (invoked
when converting Python arguments to `IValues` before calling TorchScript
code).

**Test Plan**
This commit adds `TestScriptList` to `test_list_dict.py`, a set of tests
that check that all of the common list operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D29478121

Pulled By: SplitInfinity

fbshipit-source-id: 652cc25cfa37debe28db9527504846f22abd8b54
2021-07-01 20:28:13 -07:00
Meghan Lele
6c1c1111de [JIT] Add reference semantics to TorchScript classes (#44324)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44324

**Summary**
This commit adds reference semantics to TorchScript class types;
modifications made to them within TorchScript will be visible in Python.

**Test Plan**
This commit adds a unit test to `TestClassType` that checks that
modifications made to a class type instance passed into TorchScript are
visible in Python after executing the scripted function or module.

**Fixes**
This commit closes #41421.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D24912807

Pulled By: SplitInfinity

fbshipit-source-id: d64ac6211012425b040b987e3358253016e84ca0
2021-06-30 14:27:17 -07:00
Meghan Lele
d9d7d5e24a [torch] Remove migration warning for ScriptDict
Summary:
This commit removes the warning that suggests that users script their
dictionaries before passing them into TorchScript code. The ScriptDict feature
is not fully ready, so it does not make sense to recommend this yet.

Test Plan:
Sandcastle.

In addition, the PyPER test broken by the original diff passes:

```
buck test mode/opt //caffe2/torch/fb/training_toolkit/backend/tests:test_model_materializer_full_sync_lwt -- --exact 'caffe2/torch/fb/training_toolkit/backend/tests:test_model_materializer_full_sync_lwt - caffe2.torch.fb.training_toolkit.backend.tests.test_model_materializer_full_sync_lwt.ModelMaterializerFullSyncLwtTest: test_materialization_determinism_cpu' --run-disabled
```

Differential Revision: D28891351

fbshipit-source-id: 2a3a00cde935d670fb1dc7fd8c709ae9c2ad8cdc
2021-06-03 20:55:40 -07:00
Richard Barnes
3979cb0656 irange for size_t (#55320)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55320

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27572577

fbshipit-source-id: 97710fd2bb1303006b05828a0d1343b0b59ccb03
2021-06-03 01:04:13 -07:00
Meghan Lele
484d53f4a0 [torch][JIT] Warn only once when using unscripted dictionary (#59287)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59287

D27211605 added a warning in `toIValue` that warns users to script their
dictionaries before passing them to TorchScript functions in order to get some
performance benefits and reference semantics. However, this warning is emitted
every time `toIValue` is called (e.g. when a dictionary is passed to
TorchScript function), which can lead to noisy log output. This diff changes
this changes to use `TORCH_WARN_ONCE` instead.

Test Plan: Sandcastle, OSS CI.

Reviewed By: hyuen

Differential Revision: D28824468

fbshipit-source-id: e651eade4380abaf77c6c8a81ec4e565b0c2c714
2021-06-02 11:41:37 -07:00
Meghan Lele
b14c3205fd [JIT] Add torch._C.ScriptDict (#52659)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52659

**Summary**
This commit adds `torch._C.ScriptDict`, a dictionary type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made to instances of `torch._C.ScriptDict` in TorchScript are visible in
Python even when it is not returned from the function. Instances can be
constructed by passing an instance of a Python dictionary to
`torch.jit.script`. In the case of an empty dictionary, its type is
assumed to be `Dict[str, Tensor]` to be consistent with the handling of
empty dictionaries in TorchScript source code.

`torch._C.ScriptDict` is implemented using a modified version of pybind's `stl_bind.h`-style bindings attached to `ScriptDict`, `ScriptDictIterator` and `ScriptDictKeyIterator`, wrapper classes around `c10::impl::GenericDict` and `c10::impl::GenericDict::iterator`. These bindings allow instances of `torch._C.ScriptDict` to be used as if it were a regular `dict` Python. Reference semantics are achieved by simply retrieving the `IValue` contained in `ScriptDict` in `toIValue` (invoked when converting Python arguments to `IValues` before calling TorchScript code).

**Test Plan**
This commit adds `TestScriptDict` to `test_list_dict.py`, a set of tests
that check that all of the common dictionary operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.

Differential Revision:
D27211605
D27211605

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Pulled By: SplitInfinity

fbshipit-source-id: 446d4e5328375791aa73eb9e8b04dfe3465af960
2021-05-27 10:25:30 -07:00
Mike Ruberry
c0ac0fef4e Revert D27448156: irange for size_t
Test Plan: revert-hammer

Differential Revision:
D27448156 (041b4431b2)

Original commit changeset: 585da57d4de9

fbshipit-source-id: 8e047c29f391c0166e0a1a87c3fb2a0854377365
2021-04-03 19:14:00 -07:00
Richard Barnes
041b4431b2 irange for size_t (#55163)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27448156

fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
2021-04-02 23:22:29 -07:00
Thomas Viehmann
86861095fa Graceful invalidation of Python Node/Value/Block when C++ object is deleted (#50326)
Summary:
Previously we might have gotten segfaults and all, now it raises an exception.
Thread safety hasn't been an objective.

I have a followup to expand the Python interface for the API.

Fixes https://github.com/pytorch/pytorch/issues/49969.

wanchaol

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50326

Reviewed By: pbelevich

Differential Revision: D26096234

Pulled By: gmagogsfm

fbshipit-source-id: 5425772002eb4deb3830ed51eaa3964f22505840
2021-02-04 01:34:46 -08:00
anjali411
18a7ec7d7d Update the JIT complex type name to be consistent with Python (#51476)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51476

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D26179237

Pulled By: anjali411

fbshipit-source-id: 6a5c60c8545eb42416583836b8038ceffd3f3244
2021-02-03 09:59:08 -08:00
Meghan Lele
751c30038f [JIT] Properly convert Python strings implictly to device (#51340)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51340

**Summary**
`toIValue` assumes that any value passed for an argument of type
`torch.device` is a valid device object, even when it is not. This can
lead to device type arguments of functions being assigned incorrect
values (see #51098).

This commit adds an explicit check that the passed in object is indeed a
`torch.device` using `THPDevice_Check` and only then does is it
converted to an `IValue`. Since implicit conversion from strings to
devices is generally allowed, if `THPDevice_Check` fails, it is assumed
that the object is a string and an `IValue` containing a `c10::Device`
containing the passed in string is returned.

**Test Plan**
This commit adds a unit test to `test_jit.py` to test that invalid
strings passed as devices are not longer silently accepted.

**Fixes**
This commit fixes #51098.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26187190

Pulled By: SplitInfinity

fbshipit-source-id: 48c990203431da30f9f09381cbec8218d763325b
2021-02-02 10:57:56 -08:00
Anjali Chourdia
b6eaca9f1f Add type annotation logic for complex numbers (#50884)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50884

Test Plan: Imported from OSS

Reviewed By: heitorschueroff

Differential Revision: D26086963

fbshipit-source-id: f103f7f529d63d701c4f17862e30eafbab7d0c68
2021-01-26 19:39:35 -08:00
generatedunixname89002005325676
5a5bca8ef0 [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D26043955

fbshipit-source-id: 0a5740a82bdd3ac7bd1665a325ff7fe79488ccea
2021-01-25 04:20:03 -08:00
anjali411
9ac30d96aa Add complex IValues (#50883)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50883

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D26003682

Pulled By: anjali411

fbshipit-source-id: f02967d2d236d740cd8647891f732f1d63098d3e
2021-01-22 09:44:40 -08:00
Scott Wolchok
4a0d17ba2d [PyTorch][codemod] Replace immediately-dereferenced expect calls w/expectRef (#50228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50228

`fastmod -m 'expect(<((at|c10)::)?\w+Type>\(\)\s*)->'
'expectRef${1}.'`
Presuming it builds, this is a safe change: the result of `expect()`
wasn't being saved anywhere, so we didn't need it, so we can take a
reference instead of a new `shared_ptr`.
ghstack-source-id: 119782961

Test Plan: CI

Reviewed By: SplitInfinity

Differential Revision: D25837374

fbshipit-source-id: 86757b70b1520e3dbaa141001e7976400cdd3b08
2021-01-13 16:13:55 -08:00
Meghan Lele
4d3c12d37c [JIT] Print better error when class attribute IValue conversion fails (#50255)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50255

**Summary**
TorchScript classes are copied attribute-by-attribute from a py::object into
a `jit::Object` in `toIValue`, which is called when copying objects from
Python into TorchScript. However, if an attribute of the class cannot be
converted, the error thrown is a standard pybind error that is hard to
act on.

This commit adds code to `toIValue` to convert each attribute to an
`IValue` inside a try-catch block, throwing a `cast_error` containing
the name of the attribute and the target type if the conversion fails.

**Test Plan**
This commit adds a unit test to `test_class_type.py`
based on the code in the issue that commit fixes.

**Fixes**
This commit fixes #46341.

Test Plan: Imported from OSS

Reviewed By: pbelevich, tugsbayasgalan

Differential Revision: D25854183

Pulled By: SplitInfinity

fbshipit-source-id: 69d6e49cce9144af4236b8639d8010a20b7030c0
2021-01-11 14:04:26 -08:00
Luca Wehrstedt
1ac05cfe01 Remove DataPtr extractor from CUDAFuture (#48840)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48840

The CUDAFuture class needs to inspect the values it contains in order to extract its tensors (in fact, the DataPtrs backing those). These are needed first to determine what CUDA devices back those tensors, so that an event for each such device can be recorded; and later to record these DataPtrs with the CUDA caching allocator if they are used in other streams.

This became complicated when Python was added to the mix, because to inspect a Python object we need to acquire the GIL, but we couldn't do so from code that was supposed to also work in C++-only mode. The solution was for users to provide a custom way to extract DataPtrs, so that the PythonFutureWrapper could install such a custom Python-aware one. This was the DataPtr extractor.

In https://github.com/pytorch/pytorch/pull/48502 a different suggestion was proposed. At its root, it consists in adding support for IValues of type PyObject to the visit() and getSubValues() methods. In order to deal with the GIL, we do this through a virtual method: PyObjectHolder, which is the base class, is available also in C++-only mode, and thus defines this method but leaves it unimplemented; ConcretePyObjectHolder, which is the subclass, is only included in Python mode, and thus it can implement that method, acquire the GIL, and do what it's supposed to.

In my opinion, this approach is just brilliant! Thank wanchaol for proposing it! It hides the complexity of dealing with Python inside getSubValues(), where it can be done properly, thus simplifying enormously the CUDAFuture and the PythonFutureWrapper classes.
ghstack-source-id: 118704935

Test Plan: Unit tests

Reviewed By: wanchaol

Differential Revision: D25334355

fbshipit-source-id: 3f1d3bf6e6e8505a114c877fb9a6fcc3f68d91d3
2020-12-19 11:03:45 -08:00