This allows for each device type to check current devices for Triton compatibility and ensure their Triton backend is present.
This PR replaces the `has_triton()` global method which was previously used for this task, and moves the initial check for each Inductor backend on to their associated `BaseScheduler` subclass. This means that other backends, such as Halide, can also implement their own availability checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139171
Approved by: https://github.com/jansel
This gives us a decent proxy for how big of a graph we functionally had to parse.
Note that this is a cummulative counter. If people feel strongly, I can either write into the dynamo_timed datasets with metrics contexts, or clear the counters / write a counter per frame id as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147149
Approved by: https://github.com/jansel
Summary: this adds some new dynamo_timed calls in cudagraph_trees, primarily with the aim to add cudagraph-related timing to scuba. Things to note:
* Uses the changes in https://github.com/pytorch/pytorch/pull/141919 to log "runtime" entries
* The logging for chromium/tlparse/scuba relies on us providing a compile_id since it's not available in the environment. A lot of the changes here are just passing around the compile_id
* I believe the spirit of the scuba logging is to capture the overheads of `torch.compile`. Therefore, I'm not adding _every_ dynamo_timed to scuba. For example, "run_eager" is the first real execution of the inductor graph -- it's not cudagraph overhead, per se. Watch out for the two instances of `dynamo_compile_runtime_column_us="runtime_cudagraphify_time_us"`. Those are the spots I believe are _extra_ overhead we'd contribute to torch.compile.
Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only dcgan`:
* tlparse: https://fburl.com/21yrdn8h
* scuba: https://fburl.com/scuba/dynamo_compile/sandbox/wt90wnjz
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
* tlparse: https://fburl.com/r9mp7uiv
* scuba: https://fburl.com/scuba/dynamo_compile/sandbox/1nvx94re
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143220
Approved by: https://github.com/eellison
Softmax need do some preparation work that access the input tensor in two passes
- compute amax of each row
- compute (x - amax).exp.sum for each row
When the row size is large, cache can not hold all the active data and accessing the input multiple passes increases execution time since the kernel is membw bounded.
Online softmax uses a customized reduction to compute max and sum at the same time by accessing the data in one pass. Check this paper for more details ( https://arxiv.org/abs/1805.02867 ).
Also here is an online softmax kernel generated by inductor as a reference: https://gist.github.com/shunting314/67ae4fffd45d4f2753c781780332fa54
## Microbenchmark
- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=0 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax` : without online softmax
- eager_ms=6.671296119689941
- opt_ms=8.06931209564209
- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=1 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax`: with online softmax
- eager_ms=6.634047985076904
- opt_ms=6.230591773986816
Ideally, online softmax should save about 2ms here. We saves about 1.84ms in practice.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127011
Approved by: https://github.com/jansel
Summary: Gather the compilation time of individual triton kernels and log them to dynamo_compile:
* Time compilation in `_worker_compile_triton` and pass back to the main process and logged from `get_result()`.
* Added a way to track the "top N" (or N most-expensive compiles) in the metrics_context. I did this because I doubt we really care to capture potentially thousands of kernel compile times. That would be problematic for scuba logging anyway, so let's limit the number we track from the beginning. Arbitrarily chose 25 for now.
* Format the list of compile times as a json string before logging.
Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
Scuba: https://fburl.com/scuba/dynamo_compile/sandbox/nc4dzm3r
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147022
Approved by: https://github.com/jamesjwu
## Context
> **Note:** `mark_traceable` got renamed to `nonstrict_trace` after
> offline discussion. The reasons are (1) it aligns with `torch.export`'s
> `nonstrict` notion, and (2) it's more definitive in behavior suggestion.
1. [Overall Design](https://docs.google.com/document/d/1O-dR2ZQaJQVt_v67AVcDCw2yJLtqgkZFwoXK0buEWRg/edit?tab=t.0)
2. [Dynamo graph representation with `torch._higher_order_ops.flat_apply`](https://docs.google.com/document/d/1YHl5nPTJvYeCPE5TO9uA18DPWNgUYGE4gCn6bFvXcBM/edit?tab=t.0#heading=h.xtw3hhbro4gn)
## Summary
This patch adds a `torch._dynamo.nonstrict_trace` decorator, which
currently is an enhanced version of `torch._dynamo.allow_in_graph` (see
docstring for their differences). Specifically, this patch focuses on
the UI and functionality prototyping/plumbing.
The main enhancement is supporting more input types, and the
implementation challenge lies in reconstructing the input objects from
Dynamo `VariableTracker` (while accounting for buffered side-effects and
guards). This patch takes a middle-ground (simple implementation with a
bit of user labor), by
1. asking the user to provide pytree registration for non-proxy-able
input types,
2. letting Dynamo trace through `pytree_flatten` (which accounts for
buffered side-effects and guards automatically),
3. and passing in the TreeSpec as a graph attribute constant into
`torch._higher_order_ops.flat_apply` (which unflattens the inputs and
invokes the underlying function).
## Next Steps
In subsequent patches, we will try to support the following:
- annotating on class method
- reads to global tensors
- inputs that contains `pytree.register_constant`-ed instances.
- function as input
- more output types (e.g., any pytree-registered type)
- `torch.nn.Module` as inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146367
Approved by: https://github.com/zou3519
ghstack dependencies: #146714
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
Part of the required fix for https://github.com/intel/torch-xpu-ops/issues/1264.
To support `roi_align`, torchvision uses `is_compile_supported` in `torch/_dynamo/utils.py` to compile a non-deterministic version of the op for backwards passes. This PR adds XPU device to the supported compile devices.
The `is_compile_supported()` util function has extremely limited usage, only being used in `torchvision.ops.roi_align` and `torch.utils._content_store.has_storage()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147541
Approved by: https://github.com/guangyey, https://github.com/jansel
Co-authored-by: lei,zhenyuan <zhenyuan.lei@intel.com>
Current implementation reads as: we will only actually use the "python_reducer" config if the DDP forward is compiled. Otherwise, we will silently fallback to C++ reducer + no DDPOptimizer.
I'm changing this behavior to always use the python reducer if the config is specified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147123
Approved by: https://github.com/fegin
This PR adds support for list subclasses. Among other things are
1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.
If this PR is hard to review, please let me know. I can break it into several small PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel
`get_top()` is really confusing when talking about a stack, because it can mean the most recently started event on the stack or the toplevel event in perfetto(which displays the stack upside down). Rename to `get_outermost` and fix the bug associated with it, so that it returns the correct value out of the stack.
Running nanogpt now puts `guard_latency_us` correctly in the `dynamo` event:
```
tlp python benchmarks/dynamo/torchbench.py --backend inductor --device cuda --only nanogpt --amp --cold-start-latency --print-compilation-time --training --performance 2>&1 --dynamic-shapes | tee out.log
```
<img width="1281" alt="image" src="https://github.com/user-attachments/assets/4eeb371a-4d81-415a-acc4-7d303a4b2a93" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146649
Approved by: https://github.com/masnesral, https://github.com/anijain2305
Logging branches based on RecompileLimitExceeded or not. If we exceed the limit, we fallback to eager before even trying to analyze the frame. We handle RecompileLimitExceeded outside of the try/catch/finally that edits the metrics context:
72405b0c0f/torch/_dynamo/convert_frame.py (L908-L935).
dynamo_config and recompile_reason are both known before we raise the RecompileLimitExceeded, so we can add them with the rest of the "common" metrics. which are logged on metric_context decorator exit and is always called
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146544
Approved by: https://github.com/masnesral
This reintroduces the change backed out by #145393 and fixes the underlying problem.
Although using a BuiltinVariable was better than nothing when we saw a GenericAlias it had problems if there was a graph break and we had to reconstruct the original python code which BuiltinVariable did as a simple `list` instead of a `list[int]`.
This changes it to use a TypingVariable instead and then teaches TypingVariable how to reconstruct.
Original commit changeset: 77b9193acb23
python test/dynamo/test_repros.py ReproTests.test_graph_break_on_jit_isinstance
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145554
Approved by: https://github.com/anijain2305
ghstack dependencies: #145551, #145552, #145553
Issue:
https://github.com/pytorch/pytorch/issues/144888
Torchbench of timm lcnet_050 model fails on accuracy in case of `--frezing` `--inference` `--bfloat16`
`res_error==0.12`
If to turn off convolution inductor constant folding - `res_error==0.016`
`float16 error ~ 0.00669`
`float16 without conv folding ~ 0.0018`
convolution folding results in increase of error almost at one order of magnitude.
I think we should revisit and try to do something to improve the accuracy for conv folding.
E.g. For example doing conv folding at compilation time with float64?
At the moment I am adding counters to identify if convolution folding happened, and in case of bfloat16 and conv_folding - increase multiplier to the max level (10) to pass accuracy test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145623
Approved by: https://github.com/eellison
This bit me while I was trying to debug some trace issues.
In general this config is already quite large when dumping, so adding
more fields doesn't make it significantly worse.
Also a number of the items we are type checking for (except the test
configs), don't even show up. Primarily this will help us when debugging
rocm, halide, and trace configs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144700
Approved by: https://github.com/ezyang
**Problem statement**: I want to be able to centralize and simplify the process by which people add columns/data to existing spans. We have MetricsContext and ChromiumEventLogger, and there's various choices you can make to decide where and when to log different levels of observability for your events. To resolve this, I want a central API for "adding to events under dynamo_timed".
**CompileEventLogger** is intended as a frontend for MetricsContext and ChromiumEventLogger so we can use the same class for handling everything.
CompileEventLogger is intended be used within a `dynamo_timed()` context. Its purpose is to 1. log to existing events that are in progress (i.e. within dynamo_timed), and 2. log instant events to chromium that are independent of any specific span.
CompileEventLogger has three log levels:
- CHROMIUM: Log only to chromium events, visible via tlparse.
- PT2_COMPILE: Log to chromium_events + pt2_compile_events
- COMPILATION_METRIC: Log to compilation metrics in addition to the toplevel chromium and pt2_compile_event.
In addition, we have a function CompileEventLogger.add() that automagically chooses the correct log level. For now, it is conservative, and will never automagically choose to log CompilationMetrics (though I could imagine it figuring out the metadata are all keys in CompilationMetric and therefore loggable there).
The goal here is to make one single interface to log stuff for observability reasons, and make it as easy as possible.
Not included in this diff:
- V1 of this diff will not have implementations of `increment` and `add_to_set` which MetricsContext has, so those usages are not replaced yet. But I'll add those in a followup.
- We don't handle `RuntimeMetricsContext`. It's unclear if I want that to be part of this, because under RuntimeMetricsContext there might not be a toplevel event to log to, so chromium events doesn't make sense in that context. So I might leave that separate for now.
Differential Revision: [D67346203](https://our.internmc.facebook.com/intern/diff/D67346203/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143420
Approved by: https://github.com/aorenste
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel