Commit Graph

800 Commits

Author SHA1 Message Date
Mike Ruberry
7c1ea736ba Extends true_divide to be a method (#34794)
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.

In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.

New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794

Differential Revision: D20545507

Pulled By: mruberry

fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
2020-03-23 23:12:23 -07:00
Peter Bell
bd0ef784e0 FAQ: Add note about recovering from OOM (#35214)
Summary:
Closes https://github.com/pytorch/pytorch/issues/18853

This documents the workaround needed to solve the issues in https://github.com/pytorch/pytorch/issues/18853
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35214

Differential Revision: D20604877

Pulled By: ezyang

fbshipit-source-id: 71ed13cfa567d8e88fa9f18180a171cd174fb528
2020-03-23 20:22:46 -07:00
Vitaly Fedyunin
40da01db6a Add docs about memory format (#34818)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34818

Test Plan: Imported from OSS

Differential Revision: D20601336

Pulled By: VitalyFedyunin

fbshipit-source-id: d34ad226be950bf134c6b383a4810ea6aa75599e
2020-03-23 15:06:33 -07:00
Jerry Zhang
3fa7813b9f [quant] Add dequantize.tensors (#34348)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34348

We need this function to do swap dequantize for prim::ListConstruct since
the output of prim::ListConstruct is a list of Tensors

Test Plan:
.

Imported from OSS

Differential Revision: D20504454

fbshipit-source-id: e6155e37da98e2219a6f79737cd46fe32a509c9f
2020-03-20 22:51:51 -07:00
Xiang Gao
df8d6eeb19 Update docs about DP and DDP for CUDA (#35063)
Summary:
We should recommend DDP instead of DP. Hope we can also cherry-pick this for 1.5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35063

Differential Revision: D20549621

Pulled By: ngimel

fbshipit-source-id: 86b1b2134664065cc6070ea4212895f993eaf543
2020-03-20 20:06:37 -07:00
Mike Ruberry
fe276d541e Revert D20541921: [pytorch][PR] [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix)
Test Plan: revert-hammer

Differential Revision:
D20541921

Original commit changeset: abb5488dca86

fbshipit-source-id: d2c6038978f80e5429632f8b49107090a8a247f4
2020-03-19 22:39:12 -07:00
Michael Carilli
991b97277a [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix) (#35011)
Summary:
https://github.com/pytorch/pytorch/pull/32140 was approved and merged, but [reverted](d0577e19f0) because it broke builds with versions of Visual Studio older than 15.8 that were not represented in public CI.  The build failures were caused by a [known VS bug](https://developercommunity.visualstudio.com/content/problem/27729/allow-function-with-internal-linkage-as-template-n.html), fixed in versions 15.8 and newer.

The present PR reverts the revert (restoring https://github.com/pytorch/pytorch/pull/32140 's diffs) and adds a workaround to enable compilation with VS < 15.8.  The workaround isn't pretty, but it's guarded by macros such that it's only used when compiling with VS < 15.8.  All other builds compile with the same code/control flow as was merged in https://github.com/pytorch/pytorch/pull/32140.

Original description of https://github.com/pytorch/pytorch/pull/32140:
> Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

> In-place ops and ops with user-supplied out=... can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/issues/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests. Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35011

Differential Revision: D20541921

Pulled By: ezyang

fbshipit-source-id: abb5488dca8620b0daac4306ebf2bb47fc36e4f5
2020-03-19 20:18:18 -07:00
albanD
1f4a4aaf64 functional autograd api (#34066)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34066

Basic implementation of https://github.com/pytorch/pytorch/issues/30632

Test Plan: Imported from OSS

Differential Revision: D20260307

Pulled By: albanD

fbshipit-source-id: 7db5c2411ddc3e954ff8fbbe93eb3b96a2bcfb2f
2020-03-19 08:24:07 -07:00
Mike Ruberry
9c4683e8e3 Revert D20312366: [pytorch][PR] Added type promotion logic for complex numbers
Test Plan: revert-hammer

Differential Revision:
D20312366

Original commit changeset: 90f00a1a916d

fbshipit-source-id: 4510739a888b2eec5d8a72e792998ac46da6d82a
2020-03-19 05:55:57 -07:00
anjali411
c8f665dcb6 Added type promotion logic for complex numbers (#34093)
Summary:
Issue: https://github.com/pytorch/pytorch/issues/33780
After this PR:
1. dtype promotion logic will correctly work for ops involving complex scalars
2. torch.ComplexFloatTensor, torch.ComplexDoubleTensor works
3. added alias for complex64 (cfloat) and complex128 (cdouble)
4. added an internal function get_complex_default_dtype (consciously not exposed in public API)

>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex64)

>>> torch.set_default_dtype(torch.float64)
>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex128)

>>> 1j + torch.ones(2)
tensor([(1.0000 + 1.0000j), (1.0000 + 1.0000j)], dtype=torch.complex128)

>>> torch.tensor(1j) + torch.ones(2,2)
tensor([[(1.0000 + 1.0000j), (1.0000 + 1.0000j)],
        [(1.0000 + 1.0000j), (1.0000 + 1.0000j)]], dtype=torch.complex128)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34093

Differential Revision: D20312366

Pulled By: anjali411

fbshipit-source-id: 90f00a1a916d9c8eeda101eb6e9d250fce569815
2020-03-18 23:36:13 -07:00
Mike Ruberry
3b7e1cd2cc Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20509850

Pulled By: mruberry

fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
2020-03-18 15:00:53 -07:00
Edward Yang
d0577e19f0 Revert D20346700: [pytorch][PR] Eager autocasting, out-of-place ops only
Test Plan: revert-hammer

Differential Revision:
D20346700

Original commit changeset: 12d77b391731

fbshipit-source-id: 108d72bf24232f443c0be293ec932c0c478d6a60
2020-03-18 11:42:51 -07:00
Michael Carilli
aaa8f02156 Eager autocasting, out-of-place ops only (#32140)
Summary:
Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

In-place ops and ops with user-supplied `out=...` can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/pull/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests.  Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32140

Differential Revision: D20346700

Pulled By: ezyang

fbshipit-source-id: 12d77b3917310186fbddf11c59b2794dc859131f
2020-03-18 10:28:21 -07:00
Mike Ruberry
a1eaaea288 Revert D20497453: [pytorch][PR] Makes floor_divide a method, adds sparse floor division
Test Plan: revert-hammer

Differential Revision:
D20497453

Original commit changeset: ac326f2007d8

fbshipit-source-id: b94b89b1a25521506e3d0a6b072d3d4d8c55e63d
2020-03-18 01:48:50 -07:00
Mike Ruberry
b7129050e7 Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20497453

Pulled By: mruberry

fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
2020-03-18 00:01:45 -07:00
Shen Li
3c48aadd98 Update descriptions for transmitting CUDA tensors (#34888)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34888

Test Plan: Imported from OSS

Differential Revision: D20491408

Pulled By: mrshenli

fbshipit-source-id: 4ca35ac9edd4c1af4f2bae2cfb0f1f6060658d5c
2020-03-17 17:43:48 -07:00
Shen Li
800bdcf000 Removing experimental tag in for RPC and adding experimental tag for RPC+TorchScript (#34887)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34887

Test Plan: Imported from OSS

Differential Revision: D20491409

Pulled By: mrshenli

fbshipit-source-id: ce79c9706eb70a3a52a4032de4f0bd538b694332
2020-03-17 17:43:42 -07:00
Hameer Abbasi
6b701de130 Add types argument to __torch_function__ (#34303)
Summary:
This PR adds the `types` argument to `__torch_function__` as per RFC 0001: https://github.com/pytorch/rfcs/pull/3
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34303

Differential Revision: D20474992

Pulled By: ezyang

fbshipit-source-id: cdd40b3b38f3bda4ece8812a629f5db87e919d01
2020-03-17 13:32:00 -07:00
Pearu Peterson
8bae1ed144 PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem - copy (#34721)
Summary:
This is a copy of PR https://github.com/pytorch/pytorch/issues/29488 to help the merging process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34721

Differential Revision: D20444270

Pulled By: vincentqb

fbshipit-source-id: 042c56c8c0dae37834f52b4aee2deae7dd6fa659
2020-03-16 14:13:30 -07:00
Rohan Varma
fd35596585 [docs][1.5] Update distributed autograd note (#34657)
Summary:
- Update API calls `backward` and `optim.step` now that we require `context_id`
- Add notes to clarify purpose of distributed autograd context (this was a source of confusion in some feedback)
- Add note that details why optimizer requires context_id
- Clearly specify that we don't have SMART mode yet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34657

Differential Revision: D20427667

Pulled By: rohan-varma

fbshipit-source-id: 5f8a3539ccf648a78e9e9a0dfdfe389c678b1606
2020-03-12 22:56:32 -07:00
gabloa
a74fbea345 Continuous bernoulli distribution (take 2) (#34619)
Summary:
We recently had a NeurIPS paper (https://arxiv.org/abs/1907.06845 and https://papers.nips.cc/paper/9484-the-continuous-bernoulli-fixing-a-pervasive-error-in-variational-autoencoders) where we introduce a new [0,1]-supported distribution: the continuous Bernoulli. This pull request implements this distribution in pytorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34619

Differential Revision: D20403123

Pulled By: ngimel

fbshipit-source-id: d807c7d0d372c6daf6cb6ef09df178bc7491abb2
2020-03-12 11:53:18 -07:00
Nathan Goldbaum
3f1ba3c465 Redo of "Add API for listing functions overridable by __torch_function__" (#34240)
Summary:
This is a redo of https://github.com/pytorch/pytorch/pull/33791, which was reverted because it introduced a flaky test. The test was flaky and only flaky on Python3.5 because of dict order randomization.

I've fixed the issue with tests clobbering each other in b539fec and removed the override tests for `torch.nn.functional.tanh` and `torch.nn.functional.sigmoid`, which are deprecated and shouldn't be overridable in e0d7402. I also verified that no more test clobbering is happening.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34240

Differential Revision: D20252442

Pulled By: cpuhrsch

fbshipit-source-id: 069568e342a41c90e1dc76cbf85ba4aed47f24be
2020-03-12 10:33:17 -07:00
Michael Suo
c235be42dd [jit] kill script namespace (#34515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515

Once upon a time we thought this was necessary. In reality it is not, so
removing it.

For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.

There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.

Test Plan: Imported from OSS

Differential Revision: D20353503

Pulled By: suo

fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
2020-03-11 23:32:48 -07:00
Samuel
b039bca4db Fix typo in data.rst (#34624)
Summary:
Fix minor typo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34624

Differential Revision: D20401946

Pulled By: ngimel

fbshipit-source-id: 0c6a7d838aa15120b3ecb8b9ba4b57550c9bcd32
2020-03-11 19:40:18 -07:00
Edward Yang
4b929e5466 Revert D20193196: [pytorch][PR] PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem
Test Plan: revert-hammer

Differential Revision:
D20193196

Original commit changeset: 78a487991242

fbshipit-source-id: 8da4f8cb17c45af41e8c0ce80bc72581eb10dbb8
2020-03-11 09:24:34 -07:00
Pearu Peterson
2ec779d46c PCA and SVD for low-rank matrices, LOBPCG for positive-defined generalized eigenvalue problem (#29488)
Summary:
This PR implements the following linear algebra algorithms for low-rank matrices:
- [x] Approximate `A` as `Q Q^H A` - using Algorithm 4.4 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
  + exposed as `torch.lowrank.get_approximate_basis(A, q, niter=2, M=None) -> Q`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] SVD - using Algorithm 5.1 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
  + uses `torch.lowrank.get_approximate_basis`
  + exposed as `torch.svd_lowrank(A, q=6, niter=2, M=None) -> (U, S, V)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] PCA - using `torch.svd_lowrank`
  + uses `torch.svd_lowrank`
  + exposed as `torch.pca_lowrank(A, center=True, q=None, niter=2) -> (U, S, V)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices, uses non-centered sparse matrix algorithm
  + [x] documentation
- [x] generalized eigenvalue solver using the original LOBPCG algorithm [Knyazev, 2001](https://epubs.siam.org/doi/abs/10.1137/S1064827500366124)
  + exposed as `torch.lobpcg(A, B=None, k=1, method="basic", ...)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] generalized eigenvalue solver using robust LOBPCG with orthogonal basis selection [Stathopoulos, 2002](https://epubs.siam.org/doi/10.1137/S1064827500370883)
  + exposed as `torch.lobpcg(A, B=None, k=1, method="ortho", ...)`
  + [x] dense matrices
  + [x] batches of dense matrices
  + [x] sparse matrices
  + [x] documentation
- [x] generalized eigenvalue solver using the robust and efficient LOBPCG Algorithm 8 from [Duersch et al, 2018](https://epubs.siam.org/doi/abs/10.1137/17M1129830) that switches to orthogonal basis selection automatically
  + the "ortho" method improves iterations so rapidly that in the current test cases it does not make sense to use the basic iterations at all. If users will have matrices for which basic iterations could improve convergence then the `tracker` argument allows breaking the iteration process at user choice so that the user can switch to the orthogonal basis selection if needed. In conclusion, there is no need to implement Algorithm 8 at this point.
- [x] benchmarks
  + [x] `torch.svd` vs `torch.svd_lowrank`, see notebook [Low-rank SVD](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/Low-rank%20SVD.ipynb). In conclusion, the low-rank SVD is going to be useful only for large sparse matrices where the full-rank SVD will fail due to memory limitations.
  + [x] `torch.lobpcg` vs `scipy.sparse.linalg.lobpcg`, see notebook [LOBPCG - pytorch vs scipy](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/LOBPCG%20-%20pytorch%20vs%20scipy.ipynb). In conculsion, both implementations give the same results (up to numerical errors from different methods), scipy lobpcg implementation is generally faster.
  + [x] On very small tolerance cases, `torch.lobpcg` is more robust than `scipy.sparse.linalg.lobpcg` (see `test_lobpcg_scipy` results)

Resolves https://github.com/pytorch/pytorch/issues/8049.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29488

Differential Revision: D20193196

Pulled By: vincentqb

fbshipit-source-id: 78a4879912424595e6ea95a95e483a37487a907e
2020-03-11 07:33:49 -07:00
Mike Ruberry
3671036ef3 Adds true_divide function, analogous to Python 's, JAX's, NumPy's (true) division (#34236)
Summary:
See NumPy's division documentation here: https://numpy.org/doc/1.18/reference/generated/numpy.divide.html#numpy.divide.

True division is the same as PyTorch's default division except when both inputs are integer or bool tensors. In the latter case the inputs are (conceptually) cast to the default floating type before the division is performed.

The function is implemented for dense and sparse tensors and supports exporting to ONNX from PyTorch's eager mode or JIT traces. The function is inherently incompatible with exporting to ONNX via JIT script, and is another datapoint suggesting we should deprecate exporting scripted graphs to ONNX.

Tests are added for the type promotion, named tensor, and ONNX export behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34236

Reviewed By: houseroad

Differential Revision: D20334087

Pulled By: mruberry

fbshipit-source-id: 83d00d886f46f713215d7d9e02ffd043164c57f1
2020-03-09 21:06:33 -07:00
Kamil Wojcicki
65bad41cbe Fixed typos in quantization docs / docstrings (#34182)
Summary:
Removed extra back quote character.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34182

Differential Revision: D20320146

Pulled By: jerryzh168

fbshipit-source-id: 33c347711a052cc55f7d1a41ed959dadf99a3d7d
2020-03-06 21:53:52 -08:00
Duncan Riach
516a587438 Enhance reproducibility documentation (#33795)
Summary:
Improves explanation of non-determinism when running on GPUs. Adds info about `torch.nn.BCELoss` operating non-deterministically on GPUs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33795

Differential Revision: D20284880

Pulled By: ngimel

fbshipit-source-id: d543959636d261a80c234150304344b19a37ba5d
2020-03-06 15:32:04 -08:00
Elias Ellison
479c3b0aa5 [JIT] add support for torch.norm (#33783)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33783

Fix for https://github.com/pytorch/pytorch/issues/20113

Test Plan: Imported from OSS

Differential Revision: D20121917

Pulled By: eellison

fbshipit-source-id: ffedcc40678cd80f5529ff9323088eed544e5158
2020-03-05 14:46:24 -08:00
Shen Li
ac6e75a165 Revert D20195053: [pytorch][PR] Add API for listing functions overridable by __torch_function__
Test Plan: revert-hammer

Differential Revision:
D20195053

Original commit changeset: 1585f4e405f5

fbshipit-source-id: 3c1aab9c60e3138d40d200ae4238bda0cddf8896
2020-03-04 10:13:54 -08:00
peter
5f4a01b2ea Update MAGMA to 2.5.2 for Windows (#34205)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34205

Differential Revision: D20248224

Pulled By: soumith

fbshipit-source-id: f5e0fe06aa8f8ee551abe45db1d55d06e95ab928
2020-03-04 08:28:09 -08:00
Jessica Lin
6d78882158 Add layout.html to template for stable docs (#33770)
Summary:
When docs are built, conf.py points to a _templates-stable/layout.html that does not exist.
Adding this file here so future stable docs will build with Google Analytics tags and without the unstable able that is in _templates/layout.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33770

Differential Revision: D20164895

Pulled By: jlin27

fbshipit-source-id: 5fca9f9b825b1484dab52e2b2d91f92ae6372371
2020-03-04 03:14:52 -08:00
Shen Li
3af0dffe84 Use double quotes in C++ to stay consistent with Python RPC docs (#34095)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34095

Test Plan: Imported from OSS

Differential Revision: D20227343

Pulled By: mrshenli

fbshipit-source-id: 69c556beee1f9e944eb1053b5ff0ac368dd99c60
2020-03-03 16:44:30 -08:00
Shen Li
f1085a8e41 Improve ProcessGroup RpcBackendOptions Constructor API (#34081)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34081

Before this commit, applications have to do the following to configure
number of threads in ProcessGroup RPC backend:

```
op = ProcessGroupRpcBackendOptions()
op.rpc_timeout = rpc_timeout
op.init_method = init_method
op.num_send_recv_threads = 32
init_rpc(...., rpc_backend_options=op)
```

After this commit, it can be simplified to:

```
init_rpc(...., rpc_backend_options=ProcessGroupRpcBackendOptions(num_send_recv_threads=32))
```

Fixes #34075

Test Plan: Imported from OSS

Differential Revision: D20227344

Pulled By: mrshenli

fbshipit-source-id: def4318e987179b8c8ecca44d7ff935702c8a6e7
2020-03-03 16:43:29 -08:00
Nathan Goldbaum
ad2825a2c9 Add API for listing functions overridable by __torch_function__ (#33791)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33182

This adds private API functions that developers of types that implement `__torch_function__` can use to ensure full coverage of the subset of the PyTorch API that can be overrided.

I've refactored some of the code in the tests into a new `torch._overrides.get_overridable_functions` function. I've also changed `TENSOR_LIKE_TORCH_OVERRIDES` into `torch._overrides.get_testing_overrides` and `IGNORED_TORCH_FUNCTIONS` into `torch._overrides.get_ignored_functions`. Making these two static global variables in the tests into functions should allow rewriting their implementation to construct their return values instead of just statically defining the return value as is done here. Currently that is blocked on not being able to inspect function signatures of compiled kernels in PyTorch (see https://github.com/pytorch/pytorch/issues/28233). See the docs I've added for usage examples of these new functions. I also refactored the existing override tests to make use of these new functions, which should be a good forcing function to make sure they're kept up-to-date.

Finally, while working on this I discovered that `TestTorchFunctionOverrides.test_mean` and `TestTorchFunctionOverrides.test_mm` weren't ever being run because they were getting clobbered by the other dynamically generated override tests. I fixed that by renaming the tests and then fixing the actual test code. I've verified that all the subclassing semantics is correct and that the updated test answers are correct. I'm happy to put the fixes to the existing tests in as a separate pull request if that would be easier to review.

ping cpuhrsch since the feature request originally came from them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33791

Differential Revision: D20195053

Pulled By: cpuhrsch

fbshipit-source-id: 1585f4e405f5223932b410eae03a288dc8eb627e
2020-03-03 12:40:34 -08:00
Moto Hira
6631c2a627 [doc] Add grad context manager doc to toplevel torch module. (#33877)
Summary:
fixes https://github.com/pytorch/pytorch/issues/32014
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33877

Differential Revision: D20141801

Pulled By: albanD

fbshipit-source-id: bac713382a71666dd5e2499f710c51a55cc579ba
2020-03-02 06:32:36 -08:00
Basil Hosmer
ad769d74d9 Collapse _like overloads into a single overload. (#33705)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33705

The fact that there were two overloads appears to be a historical
artifact that dates back to when goldsborough originally added these
bindings in the first place.  If TensorOptions is made optional,
then you only need one overload, not two, as they are exactly redundant
with each other.  When MemoryFormat was added, it was made a little
harder to do this, as the C++ syntax at::empty_like(t, memory_format) would
not work if you collapsed the overload; but now it works because TensorOptions
supports MemoryFormat.

The upshot is, I can get rid of all the overloads and just have one overload.
Amazingly, this change is backwards compatible, as the test attests.  While
I was at it, I also deleted the overload name from the functions entirely.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20073355

Pulled By: bhosmer

fbshipit-source-id: c6a8908213b32ccf6737ea864d135e2cce34f56b
2020-03-01 19:40:22 -08:00
Ailing Zhang
69d2741480 Add list of view ops to public doc. (#32560)
Summary:
This PR comes from discussion with albanD in https://fb.quip.com/npBHAXaPfnbu. Main goal is to clarify view ops with general outplace/inplace ops and remind users about the difference.
For reference this information is only available in code which is internal and hard to find. Also changes to this list actually affect users so we think it's better to expose it as public information. It's also helpful for new backend like XLA when implementing PyTorch ops. 19bbb4fccb/tools/autograd/gen_autograd.py (L32-L68)
Please feel free to comment!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32560

Differential Revision: D20161069

Pulled By: ailzhang

fbshipit-source-id: b5f1fd4353fe7594a427784db288aeb5a37dc521
2020-02-28 15:05:55 -08:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Omkar Salpekar
24dd800e6a [Dist Autograd] Functional API for Dist Autograd and Dist Optimizer (#33711)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33711

Fixed #33480

This makes `dist_autograd.backward` and `dist_optimizer.step` functional by making the user explicitly pass in the `context_id` as opposed to relying on the confusing thread_local context_id.

This diff incorporates these API changes and all places where these functions are called.

More concretely, this code:

```
with dist_autograd.context():
    # Forward pass.
    dist_autograd.backward([loss.sum()])
    dist_optim.step()
```

should now be written as follows:

```
with dist_autograd.context() as context_id:
    # Forward pass.
    dist_autograd.backward(context_id, [loss.sum()])
    dist_optim.step(context_id)
```

Test Plan: Ensuring all existing dist_autograd and dist_optimizer tests pass with the new API. Also added a new test case for input checking.

Differential Revision: D20011710

fbshipit-source-id: 216e12207934a2a79c7223332b97c558d89d4d65
2020-02-26 19:08:28 -08:00
Elias Ellison
857eb4145e [JIT] add support for torch.cdist (#33737)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33737

Test Plan: Imported from OSS

Differential Revision: D20121916

Pulled By: eellison

fbshipit-source-id: b0427bbfd3ade1f3129c4a95a542fbc32c3abd76
2020-02-26 18:37:37 -08:00
Elias Ellison
f31b1d3453 [JIT] add support for lu_unpack (#33736)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33736

Test Plan: Imported from OSS

Differential Revision: D20121914

Pulled By: eellison

fbshipit-source-id: 1136f4d7678a2233129aefe3e30234af385b8353
2020-02-26 18:37:33 -08:00
Elias Ellison
4543cf4eb1 [JIT] add support for torch.lu to torchscript (#33724)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33724

Fix for https://github.com/pytorch/pytorch/issues/33381, partial fix of https://github.com/pytorch/pytorch/issues/30786

Test Plan: Imported from OSS

Differential Revision: D20077321

Pulled By: eellison

fbshipit-source-id: a1e6a0370712b36c9f66979098ac2f9d500ca5f6
2020-02-26 18:37:28 -08:00
Ahmad Salim Al-Sibahi
24659d28a1 Feature/vonmises upstream (#33418)
Summary:
Third try of https://github.com/pytorch/pytorch/issues/33177 😄
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33418

Differential Revision: D20069683

Pulled By: ezyang

fbshipit-source-id: f58e45e91b672bfde2e41a4480215ba4c613f9de
2020-02-26 08:19:12 -08:00
Michael Carilli
fc6a153688 [WIP] Reanimate gradient scaling API with original scale update heuristic (#33366)
Summary:
Also, windows memory failures responsible for the earlier reversion have been fixed.

This PR (initially) contains 2 commits:
* a revert of the revert
* all changes to implement the original Apex scale update heuristic, squashed into a single commit for easier diff review
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33366

Differential Revision: D20099026

Pulled By: ngimel

fbshipit-source-id: 339b9b6bd5134bf055057492cd1eedb7e4461529
2020-02-25 19:00:34 -08:00
peter
adbe289870 Update MKL to 2020.0.166 for Windows (#33690)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33690

Differential Revision: D20089300

Pulled By: ezyang

fbshipit-source-id: 887c006fbdb2c837f0a1c607a196811f44f1fb35
2020-02-24 22:43:34 -08:00
Michael Suo
dc3d47110a [docs] add experimental warning to TorchScript classes in language reference (#33697)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33697

reference

Test Plan: Imported from OSS

Differential Revision: D20070220

Pulled By: suo

fbshipit-source-id: 9828d876afed59203cc472eaf0134d52d399069e
2020-02-24 14:01:19 -08:00
anjali411
13e4ee7883 Added tensor.is_complex(), is_complex and dtype.is_complex py binding, tensor printing, and dixed the scalar type returned for complex float (#33268)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33268

Test Plan: Imported from OSS

Differential Revision: D19907698

Pulled By: anjali411

fbshipit-source-id: c3ce2e99fc09da91a90a8fb94e5525a00bb23703
2020-02-20 13:38:01 -08:00
Edward Yang
ae53f8dd25 Revert D19859905: [pytorch][PR] Gradient scaling API
Test Plan: revert-hammer

Differential Revision:
D19859905

Original commit changeset: bb8ae6966214

fbshipit-source-id: 28f1c93e8a00e3a4bbe8cc981499b15468f0b970
2020-02-14 11:03:27 -08:00