Commit Graph

2183 Commits

Author SHA1 Message Date
Chien-Chin Huang
7ba513b6e4 [FSDP][state_dict] Expose optimizer state_dict config (#105949)
Optimizer state_dict config are not exposed. This PR exposes the 2 dataclass.

Differential Revision: [D47766024](https://our.internmc.facebook.com/intern/diff/D47766024/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105949
Approved by: https://github.com/rohan-varma
2023-08-21 07:29:49 +00:00
Nicolas Hug
42625da5e1 reseed all Generators in Dataloader's _worker_loop() -- via GC (#107131)
Alternative to https://github.com/pytorch/pytorch/pull/107034, implements @ezyang 's suggestion from https://github.com/pytorch/pytorch/pull/107034#discussion_r1292857201.

This PR addresses https://fb.workplace.com/groups/pytorch.oss.dev/posts/1699944830430051 and does a bunch of stacked changes:

- Make `Generator` class support GC;this makes all `Generator` instances tracked and accessile through Python's GC.
- Use the GC to retrieve all existing Generator instances in Dataloader's `_worker_loop` and re-seed them: this extends what is already applied to the global/default Generator, which is already re-seeded.

~TODO: a bit of docs and justification, which I'll do if this PR is mergeable.~ -- Done

CC @albanD @ezyang  as previously discussed

BC-Breaking Note
-------------------

We now re-seed all `Generator` instances within the `Dataloader` workers' loop to ensure that their RNG is different across workers.
Previously, the RNG of user-defined `Generators` would be the same across workers, which could lead to wrong training procedures. This only affects user-defined `Generators`, not the default `Generator` (which was already re-seeded).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107131
Approved by: https://github.com/ezyang
2023-08-18 10:23:23 +00:00
Alexander Pivovarov
35b2b3ee47 Fix rst formatting in torch.compiler_troubleshooting.rst (#107360)
Fix some rst formatting - mostly around ``.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107360
Approved by: https://github.com/kit1980
2023-08-18 01:04:24 +00:00
Alexander Pivovarov
a98f745c80 Use compiled model in torch.compiler_get_started (#107267)
- Text says `Next, let’s try a real model like resnet50 from the PyTorch` but the code example uses `resnet18`. Fixed code to use `resnet50` for consistency.
- One of the examples in TorchDynamo Overview uses uncompiled model - fixed it - now it uses compiled model.
- Removed unused import to `_dynamo` in one of the examples
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107267
Approved by: https://github.com/soulitzer
2023-08-17 09:26:54 +00:00
Alexander Pivovarov
11e366943d Fix rst formatting in dynamo/guards-overview doc (#107275)
Fix rst formatting in dynamo/guards-overview doc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107275
Approved by: https://github.com/soulitzer
2023-08-17 09:04:44 +00:00
fduwjj
983fd5ba79 [2D][TP] Enable DDP TP integration with unit test (#106583)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106583
Approved by: https://github.com/kumpera, https://github.com/fegin, https://github.com/wanchaol
ghstack dependencies: #107313
2023-08-17 02:54:17 +00:00
gmagogsfm
ddba7a5a55 Expose torch.export() API (#106904)
Other class definitions and utilities will be moved in subsequent PRs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106904
Approved by: https://github.com/avikchaudhuri
2023-08-16 10:47:26 +00:00
BowenBao
19a76290d8 [ONNX] Public diagnostic options for 'dynamo_export' (#106741)
Generate diagnostic reports to monitor the internal stages of the export process. This tool aids in unblocking model exports and debugging the exporter.

#### Settings

~~1. Choose if you want to produce a .sarif file and specify its location.~~
1. Updated: saving .sarif file should be done by `export_output.save_sarif_log(dst)`, similar to saving exported onnx model `export_output.save(model_dst)`.
2. Customize diagnostic options:
    - Set the desired verbosity for diagnostics.
    - Treat warnings as errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106741
Approved by: https://github.com/titaiwangms, https://github.com/justinchuby, https://github.com/malfet
2023-08-15 17:46:15 +00:00
youkaichao
05db3d9969 improve doc on how to understand dynamo (#106860)
Per the discussion in https://github.com/pytorch/pytorch/pull/106673#issuecomment-1669939815 , I add more documentation to explain the output of dynamo compilation. I didn't find any de-compile library, so I manually de-compile the bytecode. The result looks good.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106860
Approved by: https://github.com/jansel, https://github.com/msaroufim
2023-08-14 19:49:24 +00:00
BowenBao
22095acfd7 [ONNX] Migrate to PT2 logging (#106592)
Summary
- The 'dynamo_export' diagnostics leverages the PT2 artifact logger to handle the verbosity
level of logs that are recorded in each SARIF log diagnostic. In addition to SARIF log,
terminal logging is by default disabled. Terminal logging can be activated by setting
the environment variable `TORCH_LOGS="onnx_diagnostics"`. When the environment variable
is set, it also fixes logging level to `logging.DEBUG`, overriding the verbosity level
specified in the diagnostic options.
See `torch/_logging/__init__.py` for more on PT2 logging.
- Replaces 'with_additional_message' with 'Logger.log' like apis.
- Introduce 'LazyString', adopted from 'torch._dynamo.utils', to skip
evaluation if the message will not be logged into diagnostic.
- Introduce 'log_source_exception' for easier exception logging.
- Introduce 'log_section' for easier markdown title logging.
- Updated all existing code to use new api.
- Removed 'arg_format_too_verbose' diagnostic.
- Rename legacy diagnostic classes for TorchScript Onnx Exporter to avoid
confusion.

Follow ups
- The 'dynamo_export' diagnostic now will not capture python stack
information at point of diagnostic creation. This will be added back in
follow up PRs for debug level logging.
- There is type mismatch due to subclassing 'Diagnostic' and 'DiagnosticContext'
for 'dynamo_export' to incorporate with PT2 logging. Follow up PR will
attempt to fix it.
- More docstrings with examples.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106592
Approved by: https://github.com/titaiwangms
2023-08-11 23:27:00 +00:00
Howard Huang
149e458846 [BE] RPC is missing RRef docs (#106902)
Current `RRef` class derives from `PyRRef` which has all the method definitions and documentations, and we don't see any of this in the current documentation:

<img width="891" alt="image" src="https://github.com/pytorch/pytorch/assets/14858254/62897766-a660-4846-97bf-182e4aa45079">

Changing to :inherited-member: so sphinx can pick up these methods

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106902
Approved by: https://github.com/svekars
2023-08-10 16:26:27 +00:00
Ivan Yashchuk
c913f3857f Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 22:29:32 +00:00
Jason Lu
bc88028e8e Back out "Reland "Make adding buffers more like adding parameters (#104069)" (#106224)" (#106743)
Summary:
Original commit changeset: 81319beb97f3

Original Phabricator Diff: D47961182

Test Plan: revert to maintain backward compat with legacy ads_dper3 production package. Read details in: S357822

Reviewed By: atuljangra

Differential Revision: D48131623

@diff-train-skip-merge
(D48131623 landed internally)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106743
Approved by: https://github.com/malfet
2023-08-08 15:27:34 +00:00
PyTorch MergeBot
891bb259f8 Revert "Remove dynamo+nvfuser (#105789)"
This reverts commit 6030151d37.

Reverted https://github.com/pytorch/pytorch/pull/105789 on behalf of https://github.com/DanilBaibak due to Break a lot of tests on main. ([comment](https://github.com/pytorch/pytorch/pull/105789#issuecomment-1669710571))
2023-08-08 14:20:32 +00:00
Ivan Yashchuk
6030151d37 Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 13:29:31 +00:00
Ramin Azarmehr
cdfd0ea162 [MPS] Introduce torch.mps.Event() APIs (#102121)
- Implement `MPSEventPool` to recycle events.
- Implement python bindings with `torch.mps.Event` class using the MPSEventPool backend. The current member functions of the Event class are `record()`, `wait()`, `synchronize()`, `query()`, and `elapsed_time()`.
- Add API to measure elapsed time between two event recordings.
- Added documentation for Event class to `mps.rst`.
- Added test case to `test_mps.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102121
Approved by: https://github.com/albanD, https://github.com/kulinseth
2023-08-08 03:45:45 +00:00
AllenTiTaiWang
b782beb18e [ONNX] Expose OnnxRegistry publicly (#106140)
The official move of `OnnxRegistry` to `torch.onnx` allows it to become one of the parameters in `torch.onnx.ExportOption`. By incorporating `OnnxRegistry` in `torch.onnx.ExportOption`, users gain access to various functionalities, including the ability to register custom operators using `register_custom_op`, check whether an operator is supported using `is_registered_op`, and obtain symbolic functions that support specific operators using `get_functions`.

Additionally, `opset_version` is now exclusively available in `torch.onnx.OnnxRegistry` as it is removed from `torch.onnx.ExportOption`. The initialization of the registry with torchlib under the provided opset version ensures that the exporter uses the specified opset version as the primary version for exporting.

These changes encompass scenarios where users can:

1. Register an unsupported ATen operator with a custom implementation using onnx-script.
2. Override an existing symbolic function (onnx invariant).

NOTE: The custom registered function will be prioritized in onnx dispatcher, and if there are multiple custom ones, the one registered the last will be picked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106140
Approved by: https://github.com/justinchuby, https://github.com/thiagocrepaldi
2023-08-04 20:46:03 +00:00
wangxiyuan
4eeda6616c Correct URL Link for torchDynamo (#105903)
Correct some error or 404 urls for torchDynamo doc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105903
Approved by: https://github.com/malfet
2023-07-31 20:50:09 +00:00
Mikayla Gawarecki
d8e5f2aa6d Reland "Make adding buffers more like adding parameters (#104069)" (#106224)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106224
Approved by: https://github.com/atalman, https://github.com/albanD
2023-07-31 17:18:56 +00:00
Svetlana Karslioglu
4d3ea5df65 Restructure torch.compile docs (#105376)
Current torch.compile docs have become a bit of a mess with the docs expanded in the left nav. This PR moves them under the torch.compiler menu item in the left nav. A bunch of rewrites were made in collaboration with @msaroufim to address formatting issues, latest updates that moved some of the APIs to the public torch.compiler namespace were addressed as well. The documentation is broken down in three categories that address three main audiences: PyTorch users, Pytorch Developers and PyTorch backend vendors. While, the user-facing documentation was significantly rewritten, dev docs and vendor docs kept mostly untouched. This can be addressed in the follow up PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105376
Approved by: https://github.com/msaroufim
2023-07-28 20:58:57 +00:00
Mikayla Gawarecki
035124774a Enable registering fallthroughs to (op, dk) from torch.library (#106086)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106086
Approved by: https://github.com/zou3519, https://github.com/albanD
2023-07-28 19:37:59 +00:00
fduwjj
487ebcac3b Clean up unsed MHA code to avoid confusion (#105956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105956
Approved by: https://github.com/wz337, https://github.com/ezyang, https://github.com/wanchaol
2023-07-27 17:10:17 +00:00
Edward Z. Yang
edebdaf182 Change _dynamo.explain to be explain(f)(*args, **kwargs) (#106066)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106066
Approved by: https://github.com/wanchaol, https://github.com/voznesenskym
2023-07-27 03:21:52 +00:00
Edward Z. Yang
f70844bec7 Enable UFMT on a bunch of low traffic Python files outside of main files (#106052)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106052
Approved by: https://github.com/albanD, https://github.com/Skylion007
2023-07-27 01:01:17 +00:00
Jerry Zhang
3a77f9aaaf [quant][api] Move torch.ao.quantization.pt2e.quantizer to torch.ao.quantization.quantizer (#105885)
Summary: moving quantizer to torch.ao.quantization to make it a public api, since pt2e is a folder for implementations

Test Plan:
CIs

sanity check: "buck test //executorch/backends/xnnpack/test:test_xnnpack_quantized_models -- test_resnet18"

Differential Revision: D47727838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105885
Approved by: https://github.com/andrewor14
2023-07-26 18:20:09 +00:00
Danni Li
c0c208516b [Doc] Add Tensor.Shape (#104750)
Summary:
Add `Tensor.Shape` doc.

Fix: #104038

Ref:

- https://github.com/pytorch/pytorch/issues/5544
- https://github.com/pytorch/pytorch/issues/1980

Differential Revision: D47278630

CC: @svekars @carljparker

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104750
Approved by: https://github.com/mikaylagawarecki
2023-07-26 16:30:15 +00:00
albanD
9d2e15882e Add torch.utils to the docs page, remove dead code and fix docstrings (#105142)
As per title.
Note that the c++ side code for the minidumps part was removed. So trying to call any of these 3 functions today results in an error saying that `torch._C` doesn't have these attributes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105142
Approved by: https://github.com/janeyx99
2023-07-26 14:24:58 +00:00
Andrew Gu
c9edf11073 [FSDP][Docs] Make model/optim state dict configs visible in docs (#105848)
This closes https://github.com/pytorch/pytorch/issues/104717.

Rendered docs:
![Screenshot 2023-07-25 at 11 15 23 AM](https://github.com/pytorch/pytorch/assets/31054793/3c38166a-70c0-472c-805d-452d3bd9c700)
![Screenshot 2023-07-25 at 11 15 30 AM](https://github.com/pytorch/pytorch/assets/31054793/6d275d94-020a-44a2-a64c-0eeba083d47f)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105848
Approved by: https://github.com/rohan-varma
2023-07-25 16:23:53 +00:00
Ruoxi
5afc2f5069 Documentation for torch.autocast (#95760)
- [x] Corrected examples for CUDA devices.
- [x] Information about availability of `torch.autocast`.

Fixes #95547

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95760
Approved by: https://github.com/leslie-fang-intel, https://github.com/kit1980
2023-07-22 03:56:34 +00:00
PyTorch MergeBot
050d3de07d Revert "Correct dynamo logging docs (#105658)"
This reverts commit f3a261e096.

Reverted https://github.com/pytorch/pytorch/pull/105658 on behalf of https://github.com/PaliC due to breaking docs f3a261e096 ([comment](https://github.com/pytorch/pytorch/pull/105658#issuecomment-1646310865))
2023-07-21 22:38:28 +00:00
David Radley
f3a261e096 Correct dynamo logging docs (#105658)
Fixes #105657

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105658
Approved by: https://github.com/zou3519
2023-07-21 21:37:02 +00:00
PyTorch MergeBot
117325862c Revert "Add torch.utils to the docs page, remove dead code and fix docstrings (#105142)"
This reverts commit e985719e98.

Reverted https://github.com/pytorch/pytorch/pull/105142 on behalf of https://github.com/huydhn due to Sorry for reverting this but it is failing python doc build job in trunk e985719e98 ([comment](https://github.com/pytorch/pytorch/pull/105142#issuecomment-1644874540))
2023-07-21 01:47:49 +00:00
albanD
e985719e98 Add torch.utils to the docs page, remove dead code and fix docstrings (#105142)
As per title.
Note that the c++ side code for the minidumps part was removed. So trying to call any of these 3 functions today results in an error saying that `torch._C` doesn't have these attributes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105142
Approved by: https://github.com/janeyx99
2023-07-21 00:14:59 +00:00
ydwu4
6abb8c382c [export] add kwargs support for export. (#105337)
Solving #105242.

During export, the exported function's signature changes multiple times. Suppose we'd like to export f as shown in following example:
```python
def f(arg1, arg2, kw1, kw2):
  pass

args = (arg1, arg2)
kwargs =  {"kw2":arg3, "kw1":arg4}

torch.export(f, args, kwargs)
```
The signature changes mutiple times during export process in the following order:
1. **gm_torch_level = dynamo.export(f, *args, \*\*kwargs)**. In this step, we turn all  kinds of parameters such as **postional_only**, **var_positioinal**, **kw_only**, and **var_kwargs** into **positional_or_kw**.It also preserves the positional and kword argument names in original function (i.e. f in this example) [here](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/export.py#L546C13-L546C27). The order of kwargs will be the **key order** of kwargs (after python 3.6, the order is the insertion of order of keys) instead of the original function signature and the order is baked into a _orig_args varaible of gm_torch_level's pytree info. So we'll have:
```python
def gm_torch_level(arg1, arg2, kw2, kw1)
```
Such difference is acceptable as it's transparent to users of export.

2. **gm_aot_export = aot_export_module(gm_torch_level, pos_or_kw_args)**. In this step, we need to turn kwargs into positional args in the order of how gm_torch_level expected, which is stored in _orig_args. The returned gm_aot_export has the graph signature of flat_args, in_spec = pytree.tree_flatten(pos_or_kw_args):
``` python
flat_args, _ = pytree.tree_flatten(pos_or_kw_args)
def gm_aot_export(*flat_args)
```

3. **exported_program(*args, \*\*kwargs)**. The epxorted artifact is exported_program, which is a wrapper over gm_aot_export and has the same calling convention as the original function "f". To do this, we need to 1. specialize the order of kwargs into pos_or_kw_args and 2. flatten the pos_or_kw_args into what gm_aot_export expected.  We can combine the two steps into one with :
```python
_, in_spec = pytree.tree_flatten((args, kwargs))

# Then during exported_program.__call__(*args, **kwargs)
flat_args  = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
```
, where kwargs is treated as a normal pytree whose keyorder is preserved in in_spec.

Implementation-wise, we treat _orig_args in dynamo exported graph module as single source of truth and kwags are ordered following it.

Test plan:
See added tests in test_export.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105337
Approved by: https://github.com/angelayi, https://github.com/tugsbayasgalan
2023-07-20 19:53:08 +00:00
Andrey Talman
c6653b65d8 Back out "Make adding buffers more like adding parameters (#104069)" (#105581)
Summary:
D47537831 is breaking pyper tests: https://fb.workplace.com/groups/802176577445480/posts/1018902842439518/

with `TypeError: register_buffer() takes 3 positional arguments but 4 were given`

Original commit changeset: d4b4069fbd38

Original Phabricator Diff: D47537831

Test Plan:
```
buck2 run //caffe2/torch/fb/training_toolkit/integration_tests/training_lifecycle/cogwheel_tests/pyper_release_v2:cogwheel_smallworld_inline_cvr_infer_pyper_pyper__canary_offline_training-launcher -- --run-harness-in-tupperware --build-fbpkg ads_dper3 --build-fbpkg training_platform
```

Reviewed By: atalman

Differential Revision: D47600140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105581
Approved by: https://github.com/mikaylagawarecki
2023-07-20 03:39:53 +00:00
Justin Chu
14d87bb5ff [BE] Enable ruff's UP rules and autoformat tools and scripts (#105428)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105428
Approved by: https://github.com/albanD, https://github.com/soulitzer, https://github.com/malfet
2023-07-19 01:24:44 +00:00
ekamiti
32d422f335 Make adding buffers more like adding parameters (#104069)
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.

Fixes #35735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki
2023-07-17 17:59:05 +00:00
Jerry Zhang
7b4d080496 [quant][pt2e] Rename _pt2e to pt2e (#104668)
Summary:
X-link: https://github.com/pytorch/executorch/pull/3

att

Test Plan: Imported from OSS

Differential Revision: D47202807

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104668
Approved by: https://github.com/andrewor14
2023-07-15 06:34:17 +00:00
Aleksandar Samardžić
d7e6040efa Update sparse semi-structured linear operator (#104608)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104608
Approved by: https://github.com/cpuhrsch
2023-07-13 23:52:39 +00:00
Aleksandar Samardžić
fc2f87b281 Add semi-structured sparse conversions (#103830)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103830
Approved by: https://github.com/amjames, https://github.com/jcaip, https://github.com/cpuhrsch
2023-07-13 21:09:09 +00:00
William Wen
15c67ca95c Update troubleshooting.rst (#105018)
Update with `TORCH_LOGS` information

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105018
Approved by: https://github.com/mlazos
2023-07-12 21:42:53 +00:00
Rodrigo Kumpera
fc012d716d [core] Bring cpu device module closer to cuda's. (#103172)
By implementing some of the functionality used by CUDA we make
implementing device agnostic code a lot easier.

With this set of changes it's now possible to get FSDP wrap a trivial
module. FWD/BWD still TBD.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103172
Approved by: https://github.com/wz337, https://github.com/wanchaol
2023-07-12 19:43:22 +00:00
Zaili Wang
16d3638c11 Add best practices for CPU backend doc (#105051)
Content same as #103948
@svekars the PR content is updated per your comment, but when trying to solve the conflict the original PR was closed by a mis-operation. Would you help handle this new one? sorry for the inconvenience.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105051
Approved by: https://github.com/svekars
2023-07-12 18:04:51 +00:00
Svetlana Karslioglu
eb03af44ee Fixes to the torch.compile doc and doctest (#104911)
Fixing the user warning in doctest by removing autosummary from the compile/index.rst :
```
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/__init__.py:docstring of torch.compile:1: WARNING: duplicate object description of torch.compile, other instance in compile/generated/torch.compile, use :noindex: for one of them
```
The error is no longer present in the log: https://github.com/pytorch/pytorch/actions/runs/5513741050/jobs/10052379357?pr=104911
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104911
Approved by: https://github.com/kit1980, https://github.com/malfet
2023-07-11 17:54:12 +00:00
Thiago Crepaldi
f1bff6601c [ONNX] Add fake tensor support to torch.onnx.dynamo_export (#103865)
## Context prior to this PR

https://github.com/pytorch/pytorch/pull/100017/ was merged onto PyTorch `main` branch with the goal of enabling `torch._dynamo.export` to perform symbolic tracing.
In that context, symbolic tracing is defined as tracing of a model using fake inputs and weights. An input is Fake when `torch.nn.Tensor` is replaced by `torch._subclasses.FakeTensor`, whereas a weight is fake when a `torch.nn.Parameter` is replaced by `torch._subclasses.FakeTensor`.

For additional context, several strategies were discussed with Meta to enable this feature, including 1) calling `torch._dynamo.export` within a `torch._subclass.FakeTensorMode` context and 2) **fake**fying input and model as separate step and then call `torch._dynamo.export` without an active `torch._subclass.FakeTensorMode` context. At the end, 2) was preferred and implemented by #100017 to minimize the number of side-effects the fake tensor mode has on the code base.

As a consequence, `torch._dynamo.export` API introduced a new argument called `fake_mode`. When symbolic tracing is used, the user must pass in the `fake_mode` used to fakefy both the input and the model. Internally, `torch._dynamo.export` will adopt this `fake_mode` instead of creating its own instance. This is needed because each instance of `FakeTensorMode` has metadata on the tensor/parameter it fakefied. Thus, using real tensor/model and specify a `fake_mode` to `torch._dynamo.export` is an error. Also, specify a `fake_mode` instance to `torch._dynamo.export` different than the one used to fakefy the model and input is also an error.

## Changes introduced from this PR

This PR is intended to integrate `torch._dynamo.export(fake_mode=...)` through `torch.onnx.dynamo_export`. In essence, it
* Introduces a new public API `ONNXFakeContext` which wraps a `FakeTensorMode` under the hood. This removes complexity from the user side while still allow the exporter to leverage the fake mode.
* Adds a new public API `enable_fake_mode` *context manager* that instantiates and return a `ONNXFakeContext`.
* Adds a new `ExportOptions.fake_context` that will be used to persist the `ONNXFakeContext` created by `enable_fake_mode` and plumb through until it reaches the call to `torch._dynamo.export`.
* Adds a `model_state_dict` argument to `ExportOutput.save` API.
  * When model is exported with fake tensors, no actual data exist in the FX module and, therefore, in the ONNX graph.
    * In fact, `torch.fx.make_fx` lifts initializers as model input when fake tensors are used
      * https://github.com/pytorch/pytorch/pull/104493 is needed to enforce name matching between Parameters and inputs
    *  A model checkpoint file or state_dict is needed to populate the ONNX graph with real initializers through `export_output.save(model_state_dict=...)` API

Symbolic tracing, or onnx fake mode, is only enabled when the user instantiates the input and model within the `enable_fake_mode` context. Otherwise, real tracing is done, which preserves the current behavior.

## Usability

Because symbolic tracing depends a lot on having changes made on Dynamo side before it can be consumed on ONNX exporter, this feature may have its API and assumptions changed as symbolic tracing matures upstream. Nonetheless, it is still important to have this feature merged ASAP on the ONNX exporter side to "lock" changes on Dynamo that would otherwise break ONNX exporter without warning.

Example:

```python
class Model(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.linear = torch.nn.Linear(2, 2)

    def forward(self, x):
        out = self.linear(x)
        return out

with torch.onnx.enable_fake_mode() as fake_context:
    x = torch.rand(5, 2, 2)
    model = Model()

# Export the model with fake inputs and parameters
export_options = ExportOptions(fake_context=fake_context)
export_output = torch.onnx.dynamo_export(
    model, x, export_options=export_options
)

model_state_dict = Model().state_dict()  # optional
export_output.save("/path/to/model.onnx", model_state_dict=model_state_dict)
```

## Next steps

* Add unit tests running the exported model with ORT
Today this is not possible yet because `make_fx` used by our Decomposition pass lifts initializers as model inputs. However, the initializer names are not preserved by FX tracing, causing a mismatch between the initializer and input name.
https://github.com/pytorch/pytorch/pull/104493 and https://github.com/pytorch/pytorch/pull/104741 should fix the initializer mismatch, enabling model execution

* Revisit `ONNXTorchPatcher` and how the ONNX initializers are saved in the graph as external data
We can try to get rid of the PyTorch patcher. If we can't, we might prefer to create specific patchers, say `FXSymbolicTracePatcher` used specifically during an export using `torch.fx.symbolic_trace` and maybe a `ExportOutputSavePacther` used specifically for `ExportOutput.save` to prevent "patching too many pytorch API that we don't need

## References

* [FakeTensor implementation](https://github.com/pytorch/pytorch/blob/main/torch/_subclasses/fake_tensor.py)
* [PR that adds fake tensor support to torch._dynamo.export](https://github.com/pytorch/pytorch/pull/100017)
* [Short fake tensor documentation](https://pytorch.org/torchdistx/latest/fake_tensor.html)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103865
Approved by: https://github.com/BowenBao
2023-07-11 03:17:17 +00:00
David Radley
dbc2216800 Add autograd modes table to docs (#104774)
Fixes #104461

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104774
Approved by: https://github.com/soulitzer
2023-07-08 03:14:10 +00:00
Aleksei Nikiforov
c42fd73cf9 Add functions to get and set default endianness in load() functions (#101973)
By default interpret tensor data as native endian, but add an option to interpret data as little endian or big endian.

Related to #101688

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101973
Approved by: https://github.com/mikaylagawarecki
2023-07-06 20:12:56 +00:00
toma
2abbed42ee correct the generated code and corresponding text to make them consistent (#104596)
Fixes #104500

As discussed in #104500, the [corresponding doc](https://pytorch.org/docs/stable/dynamo/get-started.html#getting-started) for dynamo is inconsistent between the code and explanation. I have run the code example to get the correct code.
![image](https://github.com/pytorch/pytorch/assets/6964699/d11e0f2f-2225-4ba9-8934-b06c9fc78721)
This PR fixes the problem and makes the doc more readable.

cc:
@davidberard98 @ezyang  please help me check this PR, thanks!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104596
Approved by: https://github.com/ezyang
2023-07-04 22:56:03 +00:00
angelayi
828b275740 [exportdb] Setup website (#104288)
<img width="1109" alt="image" src="https://github.com/pytorch/pytorch/assets/10901756/e67ff8a9-adb1-466f-8285-fb7d3653d139">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104288
Approved by: https://github.com/zhxchen17
2023-07-01 01:03:56 +00:00
Jesse Cai
2da6cae43c [core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)
This PR adds in support for semi-structured sparsity via a tensor
subclass. It currently uses the CUTLASS kernels merged in PR #100881.

In the future we plan to add in cuSPARSELt support (see the other PRs in
the stack), which will give us larger performance gains.

This PR adds in 2 things:
- a Tensor subclass, `SparseSemiStructuredTensor` to store the
  sparse tensor in copmressed form and override `__torch_dispatch__`.
- a conversion function that takes in a dense tensor and a
  semi-structured sparse bool mask and creates an instance of the
  subclass.

**SparseSemiStructuredTensor**

The subclass stores the dense tensor in a contiguous flattened tensor
for future compatability with cuSPARSELt, which expects this format.
Note that the CUTLASS kernels do not have this limitation, as the
specified values and the metadata are passed separately in
`_structured_sparse_linear`. In the future we can use the cuSPARSELT bindings
[here](https://github.com/pytorch/pytorch/pull/103700) for faster matmul, better dtype converage, and relaxed shape
constraints.

Since we currently don't have a way to go back from the sparse
representation to the dense representation, and we store the weights in
compressed form, we don't have a great way to handle .t().

Instead, we keep track of how often we've called transpose on our
tensor, and if it's an unexpected number we throw an error. When the first
argument is sparse, we expect an even number of calls to transpose,
while when the second argument is sparse, we expect an odd number of
calls. This is because we support second argument sparse matrix
multiplications by using transpose properties.

**to_sparse_semi_structured**

This is a conversion function to convert a dense tensor and a
semi-structured sparse bool mask into a subclass. Currently, we must
pass in a bool mask, since we can't infer it becuase there may be
additional zero elements in the dense tensor, so `tensor !=0` is not 2:4
sparse.

Once we add either a method to derive the mask from the dense tensor or
cuSPARSELt, we no longer need to pass in the mask. cuSPARSELt has it's
own helper functions to create the metadata mask.

**User Details**

We have implemented support for the following ops for `torch.float16`
and `torch.int8`:
```
torch.addmm(bias, dense, sparse.t())
torch.mm(dense, sparse)
torch.mm(sparse, dense)
aten.linear.default
aten.t.default
aten.t.detach
```

The end user interface to accelerate a nn.Linaer module with the
subclass would look like this:

```
from torch.sparse import to_sparse_semi_structured

mask = torch.Tensor([0, 0, 1, 1]).tile(128, 32).cuda().bool()
linear = Model(128, 128).half().cuda()

linear.weight = nn.Parameter(to_sparse_semi_structured(linear.weight,
                                                       mask=linear.weight.bool())

```

This also updates tests and the `torch.sparse` module docstring to
reflect these changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102135
Approved by: https://github.com/albanD
2023-06-27 19:21:06 +00:00