Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63068
The caffe2 core.Net constructor can accept a caffe2_pb2.NetDef proto, but it always creates a copy. This is wasteful when we can prove that the proto being passed to it will not be used anywhere else. So we add an "inplace" argument to the `core.Net` constructor that allows clients to give away ownership of the passed proto without copying. We default this argument to `False`, ensuring that behavior does not change unless explicitly requested.
Test Plan: Let CI run.
Differential Revision: D29976510
fbshipit-source-id: 26e13ca76f3431b8ef0de51f08bbf263491d323e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51768
This updates python/core.py to explicitly define all of the `DataType`
values rather than dynamically defining them at runtime from the
`caffe2_pb2` values.
This allows type checkers like Pyre and Mypy to see the members of the
`DataType` class. Otherwise the type checkers report errors such as
`"core.DataType" has no attribute "INT64"`.
This code does keep a run-time check that all of the data types defined
by `caffe2_pb2.proto` are defined correctly in this file. This way if
someone does add a new type to `caffe2_pb2.proto` it should be very
quickly apparent that this file needs to be updated and kept in sync.
ghstack-source-id: 121936201
Test Plan:
Confirmed that various caffe2/python tests still pass.
Verified that this allows many `pyre-fixme` comments to be removed in
downstream projects, and that Pyre is still clean for these projects.
Reviewed By: jeffdunn
Differential Revision: D26271725
Pulled By: simpkins
fbshipit-source-id: f9e95795de60aba67d7d3872d0c141ed82ba8e39
Summary: is_external_input doesn't check if the lookup tables are valid. Calling .Proto() should invalidate all lookup tables and have them rebuilt on call to any methods depending on them. This adds this check to is_external_input.
Test Plan: internal unit tests
Reviewed By: dzhulgakov, esqu1
Differential Revision: D25100464
fbshipit-source-id: d792dec7e5aa9ffeafda88350e05cb757f4c4831
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47768
This stores the next ID for a given NextName(prefix, output_id) so repeated calls to NextName are significantly faster. This accounts for ~65% of time spent for large models.
Test Plan:
buck test //caffe2/caffe2/python/...
will launch canary job before landing to ensure no regressions + confirm speedup
Reviewed By: dzhulgakov
Differential Revision: D24876961
fbshipit-source-id: 668d73060d800513bc72d7cd405a47d15c4acc34
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47530
`Net.AddExternalInput` should raise if there are duplicate names. The previous code would only raise if the addition of duplicates was in separate calls, but not if it was in the same call.
Test Plan:
Added two new regression tests
```
✓ Pass: caffe2/caffe2/python:core_test - testSetInputRecordWithBlobs (caffe2.caffe2.python.core_test.TestExternalInputs) (9.622)
✓ Pass: caffe2/caffe2/python:core_test - testAddExternalInputShouldRaiseIfDuplicate (caffe2.caffe2.python.core_test.TestExternalInputs) (9.639)
✓ Pass: caffe2/caffe2/python:core_test - testSetInputRecordWithoutBlobs (caffe2.caffe2.python.core_test.TestExternalInputs) (9.883)
✓ Pass: caffe2/caffe2/python:core_test - testAddExternalInputShouldRaiseIfDuplicateInSameCall (caffe2.caffe2.python.core_test.TestExternalInputs) (10.153)
```
Test trained 2 models. No issues
f230755456
f230754926
Reviewed By: dzhulgakov
Differential Revision: D24763586
fbshipit-source-id: c87088441d76f7198f8b07508b2607aec13521ed
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47475
This improves the core.Net cloning/init performance by quite a bit. It makes set_input_record run in linear time instead of O(n) by checking the external_input map instead of regenerating the external inputs each time and then iterating over it.
Test Plan: unit tests + canary runs
Reviewed By: dzhulgakov
Differential Revision: D24765346
fbshipit-source-id: 92d9f6dec158512bd50513b78675174686f0f411
Summary: Similar to If operator, AsyncIf also contains nets in args. It needs the same handling.
Test Plan:
New unit test test_control_op_remap
`buck test caffe2/caffe2/python:core_test`
Also it worked end to end in prototype of dist bulk eval workflow f226680903
Reviewed By: yyetim
Differential Revision: D24451775
fbshipit-source-id: 50594e2ab9bb457329ed8da7b035f7409461b5f6
Summary:
Follow-up of https://github.com/pytorch/pytorch/issues/46461 with a similar goal
Makes them more readable and possibly faster. Care has to be taken because `map` applies the function immediately while `(x for x in xs)` is a generator expression which gets evaluated later. This is a benefit in some cases where it is not required to actually create the list of values in memory (e.g. when passing to `tuple` or `extend` or `join`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46462
Reviewed By: zou3519
Differential Revision: D24422343
Pulled By: ezyang
fbshipit-source-id: 252e33499c92ac0b15238f2df32681dbbda2b237
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:
```2to3 -f future -w caffe2```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033
Reviewed By: seemethere
Differential Revision: D23808648
Pulled By: bugra
fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42219
Introduce a new extra info that is tagged on the forward net for the operators sharing the same input. The effect is that the auto gen sum of gradient for the input will not follow the tag of the operator tags in the forward net. This allow more flexible device allocation.
Test Plan:
# unit test
`./buck-out/gen/caffe2/caffe2/python/core_gradients_test#binary.par -r testMultiUseInputAutoGenSumDevice`
Reviewed By: xianjiec, boryiingsu
Differential Revision: D22609080
fbshipit-source-id: d558145e5eb36295580a70e1ee3a822504dd439a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41687
Specifically, this makes a new library (lazy), which can be used from both core
and workspace.
This allows workspace.Createnet to trigger lazy loading of dyndep dependencies.
Test Plan: Added a unit test specifically for workspace.CreateNet
Reviewed By: dzhulgakov
Differential Revision: D22441877
fbshipit-source-id: 3a9d1af9962585d08ea2566c9c85bec7377d39f2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41343
Currently caffe2.InitOpLibrary does the dll import uniliaterally. Instead if we make a lazy version and use it, then many pieces of code which do not need the caffe2urrenoperators get a lot faster.
One a real test, the import time went from 140s to 68s. 8s.
This also cleans up the algorithm slightly (although it makes a very minimal
difference), by parsing the list of operators once, rather than every time a
new operator is added, since we defer the RefreshCall until after we've
imported all the operators.
The key way we maintain safety, is that as soon as someone does an operation
which requires a operator (or could), we force importing of all available
operators.
Future work could include trying to identify which code is needed for which
operator and only import the needed ones. There may also be wins available by
playing with dlmopen (which opens within a namespace), or seeing if the dl
flags have an impact (I tried this and didn't see an impact, but dlmopen may
make it better).
Note that this was previously landed and reverted. The issue was that if a import failed and raised an exception, the specific library would not be removed from the lazy imports. This caused our tests which had libraries that failed to poison all other tests that ran after it. This has been fixed and a unit test has been added for this case (to help make it obvious what failed).
Test Plan:
I added a new test a lazy_dyndep_test.py (copied from all_compare_test.py).
I'm a little concerned that I don't see any explicit tests for dyndep, but this
should provide decent coverage.
I've added a specific test to handle the poisoning issues mentioned above, which caused the previous version to get reverted.
Differential Revision: D22506369
fbshipit-source-id: 7395df4778e8eb0220630c570360b99a7d60eb83
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39488
Currently caffe2.InitOpLibrary does the dll import uniliaterally. Instead if we make a lazy version and use it, then many pieces of code which do not need the caffe2urrenoperators get a lot faster.
One a real test, the import time went from 140s to 68s. 8s.
This also cleans up the algorithm slightly (although it makes a very minimal
difference), by parsing the list of operators once, rather than every time a
new operator is added, since we defer the RefreshCall until after we've
imported all the operators.
The key way we maintain safety, is that as soon as someone does an operation
which requires a operator (or could), we force importing of all available
operators.
Future work could include trying to identify which code is needed for which
operator and only import the needed ones. There may also be wins available by
playing with dlmopen (which opens within a namespace), or seeing if the dl
flags have an impact (I tried this and didn't see an impact, but dlmopen may
make it better).
Test Plan:
I added a new test a lazy_dyndep_test.py (copied from all_compare_test.py).
I'm a little concerned that I don't see any explicit tests for dyndep, but this
should provide decent coverage.
Differential Revision: D21870844
fbshipit-source-id: 3f65fedb65bb48663670349cee5e1d3e22d560ed
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26654
As per python contract, __getattr__ can only throw AttributeError. Throwing something else breaks hasattr() and causes upstream issues.
Similar bug was in pytorch earlier.
Test Plan: builds
Differential Revision: D17529471
fbshipit-source-id: bb6ac6c9e3be8b80fa2967e6a2e293afd1594cf9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25908
Original commit changeset: f6e961e88c01
device_option propagation is completely broken in Caffe2 for cases when pass through operators are used. As an example Gather operator don't have gradient and passes through it's inputs, which results in incorrect detection of the components for sparse parameter aggregation (component will be empty instead of the real device).
This diff is trying to fix this issue.
Original diff had a problem, that Caffe2 is not handling cases when device option is present, but contains only metadata (for example one for auto-generated reduction ops in backward pass). This diff is addressing this issue by merging device options during the backward pass
Test Plan:
1. net_transform is finally working with Gather + FloatToHalf transformed model instead of failing because of incorrect number of components.
2. New unit-test.
3. Verify that previously broken benchmark is now passing
ezyang do you have suggestions what else I should test?
Reviewed By: ezyang
Differential Revision: D17281528
fbshipit-source-id: 4a1bc386f29f6a34fbf8008effde9d4890abebfa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25203
device_option propagation is completely broken in Caffe2 for cases when pass
through operators are used. As an example Gather operator don't have gradient
and passes through it's inputs, which results in incorrect detection of the
components for sparse parameter aggregation (component will be empty instead of
the real device).
This diff is trying to fix this issue.
Test Plan:
net_transform is finally working with Gather + FloatToHalf transformed model
instead of failing because of incorrect number of components.
Reviewed By: dzhulgakov
Differential Revision: D16936041
fbshipit-source-id: 916551b933469f04e32ddf86ec4b2c07f76c9176
Summary:
fix auto grad summing for IfOp where intermediate output needs renaming.
Bug before this diff:
- we only renames the output of IfOp without changing the subnet ops output
- this results in blob not found error
the unittest provides an example
this diff fix that for IfOp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14772
Differential Revision: D13327090
Pulled By: harouwu
fbshipit-source-id: ec40ee88526ace3619c54551e223dd71158a02f8
Summary:
Goal of this PR is to unify cuda and hip device types in caffe2 python front end.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14221
Differential Revision: D13148564
Pulled By: bddppq
fbshipit-source-id: ef9bd2c7d238200165f217097ac5727e686d887b
Summary:
Original commit changeset: f5614a5d2607
D9986213 is causing Multifeed Aggregator a [huge performance different](https://our.intern.facebook.com/intern/ads/analyze_canary/412951953278781781/) and is blocking aggregator push since last Friday night: https://fburl.com/feedtools/b6izvwjz
We need to land this revert ASAP to unblock aggregator push.
Reviewed By: orionr
Differential Revision: D10123245
fbshipit-source-id: d83da8e00a1250f5d09811a0a587c127e377aab2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10528
adding 2 features to core and model_helper
- reroute_tensor which supports op insertion on net level
- model_helper complete net and cut net used for full graph analysis
Differential Revision: D9330345
fbshipit-source-id: 56341d3f500e72069ee306e20266c8590ae7985a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9636
Make sure that the blobs are registered to the net
Reviewed By: pjh5
Differential Revision: D8924883
fbshipit-source-id: f09422a2d4d5ba8bf6cfbfd00172097b5ab1fcd6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9438
Current implementation of create_from_proto doesn't work as expected: it
duplicates networks and execution steps by copying original PlanDef first and
adding each step one-by-one later.
Reviewed By: pjh5
Differential Revision: D8850316
fbshipit-source-id: 9b02836d6e6ee1c91cfdd3b4c4804f14137dc22b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9352
I am debugging a failed workflow f61490672, and found the original error message to be not informative.
Differential Revision: D8808181
fbshipit-source-id: 3f524ca092881186a492c5c0456124ce31d54751
Summary:
Closes https://github.com/pytorch/pytorch/pull/8927
Closes https://github.com/pytorch/pytorch/pull/8855
- Add parameter `enable_tracing` to the Arg field of NetDef. `net_async_tracing` will only enable Tracer for Net instances that have this field set (unless the command line argument also include the net name).
- Append a unique id to the json profiling result file because there could be multiple instances of the same net running.
- Dump json profling file regularly instead of just when the Tracer object is destroyed
Reviewed By: ilia-cher
Differential Revision: D8372378
fbshipit-source-id: 8adc9d59f48b67456beed2e3a88235c298fdfd01
* add opencl + fpga context
adds an opencl context inside caffe2/fb which can be used for fpga access
* [Caffe2] Force tensor inference checks to be triggered during testing
We've started to rely on TensorInference functions more for different analysis. This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.
* Enable building //caffe2:torch with @mode/opt
In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.
* [Caffe2] Fix cost models for DotProduct and Div. Update Tensor Inference for dot product
As title. DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs. TensorInference defined to support implementation.
* [SG-MoE] Add an option to make the experts NOT as components
* [nomnigraph] Rename and fixup convertToNeuralNetOperator API
This will make things a bit cleaner
* no longer symlink THNN.h and THCUNN.h
* forced decoder network (onnx export)
Closes https://github.com/pytorch/translate/pull/95
Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.
Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea
* Revert schema change to fix production models
Revert schema change to fix production models
* MockLogDeviceReader - rebase on FIX
# Goal
1), Build a make_mock_log_device_reader using make_mock_reader
2), Replace the real log_device_reader here: https://fburl.com/raihwf1p
# Log by D8151734
Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin
* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier
implement log barrier as a regularization method
* Add teacher weight screening.
Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.
* Add NormalizerContext
See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.
I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.
https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1
* Adding cosine similarity option in dot processor
Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.
* [nomnigraph][redo] Concat elim for sparseNN
Same as D7962948, which was reverted because Operator Schema was not
defined
* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN
Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).
https://github.com/pytorch/pytorch/pull/7918/files
* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size
enables nomnigraph and reduces codesize
* [Warmup] Allow both offline incremental training and online training
Change plan name on saving side and reading side to support both training type
This diff depends on D8128530 and D8168651.
* Revert D7802642: [Warmup] Allow both offline incremental training and online training
This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* Add legacy grad logic to fix div op on old graphs.
Add legacy grad logic to fix div op on old graphs.
* Correctly propagate operator failures
Propagate errors from operators that throw exceptions and return false
* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN
This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope
extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption(). And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.
* [opt] hgdirsync wasn't enabled, merge diverged code
Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE
* OMP parallelism over RoIs for RoIAlign op
Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.
PR: https://github.com/pytorch/pytorch/pull/8562
* Use int64_t for shape in FillOps
to avoid overflow of int32
* Implement Rotated RoIAlign op
Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.
RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre
* Rotated RoIAlign op CUDA forward implementation
CUDA forward impl for D8415490
* RoIAlignRotated op CUDA backward pass implementation
TSIA
* All remaining fixes to eliminate process_github.sh
Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py
remove skipIf(True, 'Fbcode') line from process_github.sh
replace sed of cpp file with #ifdef to control cudnnDestroy use
undo sync-time deletion of .gitattributes, remove process_github.sh
switch to using _utils._internal rather than try-import-except
This diff also fixes the open-source bug where rebuilds have
* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"
Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package
* [easy] improve error log in adagrad op
as title
* re-allow use of thnn_h_path
This fixes cffi usage in OSS
* [4/4] [tum] paralyzing layerNorm for GPU full sync
as title
* add compile=False to pytorch tests, remove hack with pyc
* Add shape and type inference for RowWiseArgMax operator
See title
* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"
This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally
# Problem
`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.
GlobalCounter on server node collect local counts from worker nodes every 1 sec.
This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.
# Plan
Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int
* [Caffe2] Fix FCGradient cost inference. Prevent overflow in cost inference
FCGradient missed a factor 2 in the `num_outputs == 3` case. Overflow was occurring with flop calculation for FC. Changed types to `uint64_t` to prevent future problems.
* Fix binary ops with empty inputs
Fix binary ops with empty inputs
* Support the filling of input blob with provided data
as title for Biz Integrity case
* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""
Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.
* [c2][easy] improve pack ops error loggings
as desc.
* Add ShapeTypeInference for LpNorm operator
As desc
* Shard test_nn to reduce runtime for each test target
Closes https://github.com/pytorch/pytorch/pull/8793
The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.
* Change default caffe2_streams_per_gpu to 1
* Remove IN_SANDCASTLE from common.py and test_nn.py
We prefer to disable the failing tests through Sandcastle UI instead.
* Add a new class for an updated prof_dag.proto
This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests
* Lambdarank for SparseNN
This diff adds a lambda_rank_layer for SparseNN.
changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op
* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""
This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [easy] A few fixups to multithread predictor benchmark
(1) support perf on T6 server
(2) remove dead code
* fix a bug about the map size
as title
* Fix reduce sum on in-place case.
Fix reduce sum on in-place case.
* [Warmup] Reland reverted diff Allow both offline incremental training and online training
Closes https://github.com/pytorch/pytorch/pull/8827
fix net transform integration test. Allow offline and online trainer to coexist D7802642.
* Add StoreHandlerNotAvailableException
Add an exception for a store that is not available or has been
deleted.
* Use exception handling for fault tolerance, missing KV store
Remove status blobs to communication ops so that exceptions propagate on
failure.
* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj
for simple bounded constrained optimization, incl non-negative box constraints.
* [GanH]: Adaptive Weighting with More Estimations
With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.
This improves parameter estimation and training stability.
* Revert some changes for landing
* Remove AutoNoGIL in StorageSharing
* Temporarily disable net_tests
* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"
This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.
* Revert "Fix reduce sum on in-place case."
This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.
* Revert "Revert "Fix reduce sum on in-place case.""
This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
* Adding instance weight to batch distill loss
as title
* add bfloat 16-31
added bfloat 16-31 and their respective unit tests
* [CUDA9] Upgrade - fbcode
CUDA9 upgrade diff D5654023 has been out for a while thanks to Pieter. But with time growing it's becoming quite hard to rebase, because of the symlinks and auto-generated build/config files in tp2. Break D5654023 into two diffs, one touching tp2 config files, and another one touching fbcode TARGETS file (adding nvcc flag). These two should be a bit easier to rebase (for detailed procedure see "Test Plan").
This diff can only be committed if:
1. CUDA 9 rpm is rolled out fleet-wide (TBD)
2. NVidia driver 390.40 is rolled out fleet-wide (done)
3. Upgrade CUDA 9.1, cudnn 7.1, nccl 2.1 (done)
4. Make sure all dependents are built (done)
5. Test all C2 operators, PyTorch (see test plan)
* Share intermediate int32 buffer across Conv ops
Adding a known type
* [C2 fix] infer function for ensure_cpu_output_op
this is adding the missing device funtion for ensure_cpu_output_op
* [int8] Add blob serializer/deserializer for Int8TensorCPU
To export to logfiledb
* [nomnigraph] Add try catch block to optimization passes in predictor
This will catch failures that happen in the optimization pass.
* Caffe2: avoid static initialization order fiasco for CAFFE_ENFORCE
CAFFE_ENFORCE uses strack trace fetcher. Which is currently a
global static variable. If at static initialization time CAFFE_ENFORCE
is used, this is a SIOF. Recently CAFFE_ENFORCE was added into init
functions registration, so we started to see this.
Meyers singleton is going to provide safety here. If stacktrace
fetcher was not registered yet, it will just use a dummy one.
* NUMA support in SparseNN CPU benchmark
Adding support for NUMA in SparseNN CPU benchmark
* [mobile-roofline] Add logging needed for roofline model
This should be all that's needed
* Let the operators using the same input if the operators are not chained
or else, we have to change the input data dims
* fix null-pointer-use UBSAN errors in in reshape_op.h
* revert previous fix on input blob name
as title
* Adding flag to let MineHardNegative automatically extract single value from dict
Model exporter requires the output of the model to be a struct. This makes it convenient to use those models directly in MineHardNegative by allow automatic extraction of the single element of dict, which is a common use case.
* Reverting change that broke internal tests back to OSS compatible state
* [bootcamp] Improve "Shape" operator to support axes specification
To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.
* Back out "Add barrier net that runs before training nets"
Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.
* Change warning to verbose log to reduce log spam
The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.
* Extract the shared code from different caffe2_benchmark binaries
The OSS benchmark and Internal benchmark will share most functions in the benchmark.
* Support MFR in sequence training
As titled.
* Make knowledge distillation work with using logged prediction feature as teacher label.
1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label
* [C2/CUDA]: unjoined cross entropy sigmoid
as desc
* Add async_scheduling executor into deferrable_net_exec_test
Add async_scheduling into tests and fix some exception cases
* Fix Event disabled error
When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync
* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA
as desc.
* [C2 Core] Infer input device option in C2 hypothesis_test checkers
Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.
For example:
CopyCPUToGPU
* [C2 Op]SplitByLengthsOp CPU/GPU implementation
[C2 Op]SplitByLengthsOp CPU/GPU implementation
* fix undefined symbol error
not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now
* Add tools in DAIPlayground platform to help debugging models
Add additional tools to allow Plauground override individual method defined in AnyExp. This will allow user to create module that specificly change certain default method behavior. An example included in this diff is deactivating test model and checkpointing. When debugging any model problems, switching off components helps me quickly narrow down the location of the bug. The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)
* add shape and type inference for int8 conversion operator
* Fix flaky test for group_norm
Fix flaky test for group_norm
* Fix group_norm_op_test flaky
Fix group_norm_op_test flaky
* Implementation of composite learning rate policy
In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.
For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.
* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader
# Use Cases:
1). input: DB file -> output: DatasetReader.
Use DBFileReader.
2). input: Reader -> build cache DB file -> output: DatasetReader.
Use CachedReader.
# Changes to CachedReader:
1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.
# Changes to tests:
1). Make a separate TestCase class for CachedReader and DBFileReader.
2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.
3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.
* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"
Original commit changeset: 4489c6133f11
* Fix LARS bug
Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.
* [tum] support sparse init & add uniformFill option
as title
* Propagate exception for async nets
Capture the exception when an exception is thrown in async nets and re-throw it after wait(). This allows exceptions to be propagated up to the caller.
This diff was a part of D7752068. We split the diff so that C2 core files changes are in a separate diff.
* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc
Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a
Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>
* [C2]ReluN Op
relu n op.
tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6
* Call destructor when assigning a blob value
* Add executor overrides
Add executor overrides flag to enable migration to async_scheduling executor
* Add barrier net that runs before training nets - attempt #2
Add a synchonize barrier net that is run before training nets. With this net, shards that are faster will wait for other shards before start training. This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.
This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.
To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net. Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.
* Handle empty nets in async_scheduling
Make sure we don't get stuck on empty nets
* use CUDA_ARCH for conditional compile
* [C2 fix] infer function for ensure_cpu_output_op
* Update group_norm test to reduce flaky test
* Fix lr_multiplier for GPU
* [fix] Re-enable events in RNN ops
We have earlier added event disabling in RNN ops as back then we didn't use
events, with current use cases this is no longer true
(https://fburl.com/8vd0lp8y)
* use ops with cude impl
* Revert D7729695: [caffe2][fix] Re-enable events in RNN ops
This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e
@bypass-lint
An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
* [observer] Clean up observer_config.h
#accept2ship
* [1/n] Refactor dataio_test.py
Replace code duplication with a common function
* Add barrier net that runs before training nets
Add a synchonize barrier net that is run before training nets. With this net, shards that are faster will wait for other shards before start training. This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow. Similar change in speech/asr_training workflow will come in another diff.
* Support the dnnlowp backend in caffe2_benchmark
This is for SHARE operator latency evaluation
* Migrate integral_image_op to main caffe2
migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi
to caffe2/caffe2/operators and implement its CPU version. Write up a test
using the hypothesis_test mechanism
* [pos_disc, fbcode] Implement unjoined lr loss
As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss.
The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where
loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x))
For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as
loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x))
Then the final expression becomes
loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0)))
where y is the true label, x is the dot product and p = logistic(x).
This kind of implementation is align with the current implementation of the original cross entropy in
https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13
* Keep the array to fix the conflict
* [C2] Compute Adagrad effective LR
The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob.
* Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs
1. Open-source extractMetaNetDef and runGlobalInitialization, for use in
2. new Predictor constructor from db file.
3. Add new run function that returns outputs as TensorMap
* Disable eigen cpu
Disable eigen cpu in transpose and reduce
* Introduce request_only/object_only property of ModelLayer
by default this is False
* A simple TC Caffe2 benchmark
We can run tunner, get MappingOptions and then use them to
compare against cuBLAS
currently broken due to LLVM issues. How to run:
hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01
add D7401202
add D7434625
add D7506031
add D7540728
buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark
* Move Caffe2 feature_maps_ops to open source
Need feature maps operators in open source project facebookresearch/BlueWhale
* Manually fix the conflicts in channel shuffle op
* Fix the inconsistency between different gh and fbcode
* Skip Adagrad GPU Test (Because some gpu implementation is missing)
* Fix another test to make sure it won't run on gpu when implementation is not available yet
* Track checkpoint performance in scuba
As title.
* [C2/CUDA]: fix cross entropy sigmoid with logits
when adding log_d_trick, I forgot to add it to the cuda impl; this diff fixes
it.
* Back out "[caffe2] Unregister MKL fallbacks for NCHW conversions"
Original commit changeset: 8918dd40205a
Will land after @jongsoo's diff https://phabricator.intern.facebook.com/D7596315 lands
* [Easy][C2] Don't add blob to external outputs from output_record if it's already external output
As desc.
* On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization
FACEBOOK:
The QPL logger needs the initialization code. In the past, the initialization code is put in the pipeline calling Caffe2. However, those places become obsolete quickly, as the product teams change places to call Caffe2 from time to time. We also need to track which teams use Caffe2 so that we can put the initialization code there.
With this diff, the initialization code is put in the predictor constructor, only enabled for mobile phones. This way, we can always enable QPL logging.
Once we do this, we can check how many times Caffe2 inference is called in production, and which models are more popular in production. This way, we can prioritize our effort supporting those models.
Will clean up the old code calling the init in the product in a separate diff.
* add padding op for sparse length tensor
to pad length-based sparse tensor with padding_value
* Add conv_op with cudaconvnet engine
Add conv_op with cudaconvnet engine
* [numa] Fix simple NUMA copy benchmark
Move XavierFill into init_net and also compute BW
* call roundf (device function) instead of round (host function)
* [caffe2_benchmark][observer] Make caffe2_benchmark use its own observer
1. Add ClearGlobalNetObservers()
2. Make caffe2_benchmark use its own observer and observer_reporter
* [detectron] Use roundf instead of round in the detectron module ops
* allow K larger than number of elements in top k op
one use case is to use this op together with PackSegments for sparse tensors, where the number of elements in each slice is not statistically defined.
* add ChannelShuffle DNNLOWP op
* fixup math_cpu.cc break
* [GanH][Easy]: Add assertion to adaptive weighting layer
0 weight causes numeric instability and exploding ne
* [Easy] Add cast op before computing norm in diagnose options
As LpNorm only takes floats we add a manual casting here.
* Introduce a new caching device allocator
`cudaMalloc` and `cudaFree` calls are slow, and become slower the
more GPUs there are. Essentially, they grab a host-wide (not device-wide) lock
because GPU memory is transparently shared across all GPUs. Normally, this
isn't much of a concern since workloads allocate memory upfront, and reuse it
during later computation.
However, under some computation models (specifically, memory conserving
approaches like checkpoint-and-recompute, see
https://medium.com/@yaroslavvb/fitting-larger-networks-into-memory-583e3c758ff9)
this assumption is no longer true. In these situations, `cudaMalloc` and
`cudaFree` are common and frequent. Furthermore, in data parallel contexts,
these calls happen at nearly the same time from all GPUs worsening lock
contention.
A common solution to this problem is to add a custom allocator. In fact,
nVIDIA provides one out of the box: CUB, which Caffe2 already supports.
Unfortunately, the CUB allocator suffers from very high fragmentation. This is
primarily because it is a "buddy" allocator which neither splits nor merges
free cached blocks. Study
https://github.com/NVlabs/cub/blob/1.8.0/cub/util_allocator.cuh#L357 if you
want to convince yourself.
This diff adapts a caching allocator from the Torch codebase
https://github.com/torch/cutorch/blob/master/lib/THC/THCCachingAllocator.cpp
which does splitting and merging and ends up working really well, at least for
workloads like the checkpoint-and-recompute computation models noted above.
I simplified the implementation a little bit, made it a bit more C++-like. I
also removed a bunch of stream synchronization primitives for this diff. I
plan to add them back in subsequent diffs.
* Report reader progress in fblearner workflows
Integrate with fblearner progress reporting API and add support to report training progress from reader nodes.
If reader is constructed with batch limits, report based on finished batch vs total batch. The finished batch may be more than total batch because we evaludate if we should stop processing everytime we dequeue a split.
If no limit for the reader, report based on finished splits (Hive files) vs total splits. This is fairly accurate.
* [GanH][Diagnose]: fix plotting
1. ganh diagnose needs to set plot options
2. modifier's blob name is used for metric field can need to be fixed before
generating net
* Automatic update of fbcode/onnx to 985af3f5a0f7e7d29bc0ee6b13047e7ead9c90c8
* Make CompositeReader stops as soon as one reader finishes
Previously, CompositeReader calls all readers before stopping. It results in flaky test since the last batch may be read by different threads; resulting in dropped data.
* [dper] make sure loss is not nan
as desc.
* [rosetta2] [mobile-vision] Option to export NHWC order for RoIWarp/RoIAlign
Thanks for finding this @stzpz and @wangyanghan. Looks like NHWC is more
optimized. For OCR though it doesn't yet help since NHWC uses more mem b/w but
will soon become important.
* Intra-op parallel FC operator
Intra-op parallel FC operator
* [C2 Proto] extra info in device option
passing extra information in device option
design doc: https://fb.quip.com/yAiuAXkRXZGx
* Unregister MKL fallbacks for NCHW conversions
* Tracing for more executors
Modified Tracer to work with other executors and add more tracing
* Remove ShiftActivationDevices()
* Check for blob entry iff it is present
When processing the placeholders ops, ignore if the blob is not present in the blob_to_device.
* Internalize use of eigen tensor
Move use of eigen tensor out of the header file so we don't get template partial specialization errors when building other libraries.
* feature importance for transformed features.
* - Fix unused parameter warnings
The changes in this diff comments out unused parameters.
This will allow us to enable -Wunused-parameter as error.
#accept2ship
* add opencv dependencies to caffe2
The video input op requires additional opencv packages. This is to add them to
cmake so that it can build
* Add clip_by_value option in gradient clipping
Add clip_by_value option in gradient clipping
when the value is bigger than max or smaller than min, do the clip
* std::round compat
* fix unit test for sqrt op
From the error logging:
[idx, grad, grad_estimate] are:
[[ 146. 0.5 0.45776367]
[ 147. 0.5 0.45776367]
The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )
The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)
This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace
Tested with:
`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`
* CompositeReader & CompositeReaderBuilder
A new type of reader gluing multiple readers together.
* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"
Original commit changeset: 9325a4356dbe
* [dai][WIP] convert params to int8 on ps before sending to trainer
Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.
* [easy] improve unit test for sparse length sum ops
as desc.
#accept2ship
* Update GitHub upstream to 771fcb3455
* move sparse hash unique ops to OOS and add unit tests
- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2
- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test
* group_norm_op for caffe2
This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494
This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).
* Resubmit D7405233: disappeared in D7464958
OOS publish causes the op missing -- however, test was still there
* [c2] add sparse hash engine for cuda unique op
The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.
* [dper][gpu] enable unit testing gpu trainer for sparse nn
to debug the GPU trainer using mock data in unit test.
make it easier to develop GPU trainer for new models.
* Reuse Gloo context for Synchronize() calls
Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).
* [GanH/WGAN][1/n]: add FC param clipping
as titled
* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark
* [GanH]: enable diagnose within model
avoid finding blob names but to directly enable inside the model
* Add `net_transformer_fun` option to DPM
This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.
Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.
* [DT] [33/n] Compile flow task groups
task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.
* Initial commit for sparse_normalize vectorization and benchmark
* [GanH]: LB Calibration for JSD
as titled
* Tracing event in async executor
Adding event tracing through TRACE_EVENT macro in async executor
* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset
D7409751 got lost in D7464958
* Visualizing realtime weights values
we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.
* [GanH][Easy]: Fix Homotopy Weighting
apparantely, there was a bug in homotopy weight (alpha, beta) update
* [c2] move sparse hash unique op out of oss
so that oss do not need to depend on google hash map.
* Get rid of std::round as it's not supported on Android
* Revert changes on setup.py
* Skip shaky test on Dataio
* fix