This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc). Most of the PRs were completely automated with RUFF as follows:
Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:
```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
"ruff",
"check",
"--fix-only",
+ "--unsafe-fixes",
"--exit-zero",
*([f"--config={config}"] if config else []),
"--stdin-filename",
```
Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):
```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@
[tool.ruff]
-target-version = "py38"
+target-version = "py39"
line-length = 88
src = ["caffe2", "torch", "torchgen", "functorch", "test"]
@@ -87,7 +87,6 @@
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
- "UP006", # keep-runtime-typing
"UP007", # keep-runtime-typing
]
select = [
```
Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
Fix: #141974
This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.
In summary, these are the changes this PR introduces:
- `ViewMeta` is turned into an abstract class (see
_FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
functions that need to be implemented. `to_out_index` should be
implemented by operations that might return more than 1 output.
- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
created (see _FunctionalizeFallbackKernel.h_).
- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
declaration and definition of the `ViewMeta` specializations, which
are automatically generated in the ATen codegen (see _gen.py_).
- New `_functionalization` Python sub-module is created (see
_Module.cpp_). It serves as namespace for the `ViewMeta`
specializations and `InverseReturnMode` enum.
- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
the automatically generated Python bindings for the `ViewMeta`
specialization, which are generated in the torch codegen (see
_generate_code.py_).
Note that this PR makes use of codegen at 2 different moments:
- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
Removes 4 fallback ops that are currently not possible to codegen, which does not break ABI-compatibility.
1. `_cudnn_rnn_backward` and `_histogramdd_bin_edges` both return `Tensor[]`, which we cannot codegen with the current design.
2. `_sparse_coo_tensor_with_dims_and_tensors` only supplies a Sparse operator, which we don't support.
3. `zeros.names` requires a `Dimname` input, which we can't currently codegen.
Removing these ops from the list will improve test performance, since the fallback op generation will use the Python proxy executor instead of calling non-existent C functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143421
Approved by: https://github.com/desertfire
ghstack dependencies: #141371, #143223
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes:
1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
There are four core ATen ops with Composite Implicit Autograd (CIA) dispatch: upsample_bilinear2d.vec, upsample_nearest2d.vec, avg_pool1d, and adaptive_avg_pool1d. Op variant auto-generation is currently skipped for CIA ops. In preparation to disable the decompositions for upsample ops by default in export, we need to generate out variants for these ops.
This change enables autogen for core-tagged CIA ops, which enables generation of upsample_bilinear2d.vec_out and upsample_nearest2d.vec_out.
Test Plan:
Added a new test test_functional_variant_autogen_out_variant_core to cover this case in test_codegen.py.
Confirmed that upsample_bilinear2d.vec_out and upsample_nearest2d.vec_out op overloads are registered (they were previously not available).
Differential Revision: D66590257
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141797
Approved by: https://github.com/larryliu0820
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
This PR is a supplement to https://github.com/pytorch/pytorch/pull/133980. The previous PR fulfill the basic functionality of XPU device guard, while we found it fails to address structured operators.
With current PR, the code snippet in RegisterXPU.cpp is as follows, where we can see the device guard is successfully generated.
```c++
struct structured_exp_out_functional final : public at::native::structured_exp_out {
void set_output_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
auto current_device = guard_.current_device();
if (C10_UNLIKELY(current_device.has_value())) {
TORCH_INTERNAL_ASSERT(*current_device == options.device(),
"structured kernels don't support multi-device outputs");
} else {
guard_.reset_device(options.device());
}
outputs_[output_idx] = create_out(sizes, strides, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
at::native::structured_exp_out::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
void set_output_raw_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
auto current_device = guard_.current_device();
if (C10_UNLIKELY(current_device.has_value())) {
TORCH_INTERNAL_ASSERT(*current_device == options.device(),
"structured kernels don't support multi-device outputs");
} else {
guard_.reset_device(options.device());
}
outputs_[output_idx] = create_out(sizes, strides, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
at::native::structured_exp_out::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return outputs_[output_idx];
}
std::array<Tensor, 1> outputs_;
c10::OptionalDeviceGuard guard_;
};
```
However, without current change, the generated code is
```c++
struct structured_exp_out_functional final : public at::native::structured_exp_out {
void set_output_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
outputs_[output_idx] = create_out(sizes, strides, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
at::native::structured_exp_out::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
void set_output_raw_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
outputs_[output_idx] = create_out(sizes, strides, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
at::native::structured_exp_out::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return outputs_[output_idx];
}
std::array<Tensor, 1> outputs_;
};
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138802
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/ezyang