Commit Graph

39 Commits

Author SHA1 Message Date
Yidi Wu
c44cb89e06 [export] detach constant tensors when they're not registered as buffer or parameter in unlift (#133031)
Summary:
Fixes T198245910.

In  previous diff D60532628 that causes the test failure, we fix the  in-consistency caused by constant tensors is accidentally reigistered as buffer by deleting the buffer and re assign them as constant.

However, this broke several existing tests in pyspeech when the exported program is re-traced with torch.jit.trace (which is an anti-pattern we probably should have some alignment), the jit tracer finds this constant tensor requiring grad and errors out.

This PR force constant attr not requiring grad, which is the correct behavior. A better fix is finding out where the constants are created in user code and why it requires grad. But this has low roi so we warn user about it.

Test Plan: See failures in T198245910.

Differential Revision: D60974869

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133031
Approved by: https://github.com/angelayi
2024-08-09 20:33:52 +00:00
Yidi Wu
bbf568aac8 Split of "[reland] [export] fix zero arg export in training_ir and constant tensor handling" (#132307)
Summary:
A re-land of D60006710.
Fixed TrainingIRToRunDecomp failures for test_tensor_attribute_zero_args and also a few re-tracability failures because run_decomposition does a retracing.

edit: also remove the eliminate_dead_code() in _unlift because of one onnx test failure:
a constant tensor attr was lifted as constant_tensor input but it's not used in the graph after aot_autograd due to a short cut in its decomposition. This causes the setattr to be removed by eliminate_dead_code but the graph signature still contains the name of that buffer, which causes an inconsitency between the transformed graph and ep's original signature after _unlift. And it seems that this has happened a few times where some nodes are accidentally removed and we're in an inconsistent state.
The alternative of removing it would be: every time we call elimiate_dead_code, we verify the consistency of the graph with 1. the graph before transformation and 2. all the meta datas but i think this deserves a complete design

edit 2: Also fix the inconsistency of graph signatures when param_constant is marked as lifted_tensor_constants but it's registered as parameters in the output of ep.module().

Differential Revision: D60532628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132307
Approved by: https://github.com/zhxchen17
2024-08-08 01:36:16 +00:00
Shangdi Yu
825002c9c6 [export][fx] More robust DCE pass (#132764)
Summary:
- make default DCE pass check schema,
- need to rebase onto https://github.com/pytorch/pytorch/pull/131651 after it's in phabricator (for now the change is manually added).

- mark Proxy dump as NotImplemented for better error msg

- Remove Proxy from tensors when dumping models, as Proxy cannot be dumped.

More details in https://docs.google.com/document/d/1G5vmTXjzxoyVGRI2kpA1gQukK_Glyg2NrE0Oh6Nlg9A/edit?usp=sharing.

Test Plan:
CI
```
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test/quantization:test_quantization -- -r  qat_conv2d
- test_export.py
- buck2 run 'fbcode//mode/dev-nosan' fbcode//modai/test:test_modai -- -r test_qat_stinson_htp_export
- buck2 run 'fbcode//mode/dev-nosan' fbcode//vizard_projects/ml_depth/tests:test_model -- -r test_qat_model_et
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test:fx -- -r dce
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=False,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=True,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r  test_fold_bn_erases_bn_node
```

Reviewed By: angelayi

Differential Revision: D60319175

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132764
Approved by: https://github.com/angelayi
2024-08-06 22:27:22 +00:00
Xuehai Pan
f3fce597e9 [BE][Easy][17/19] enforce style for empty lines in import segments in torch/[a-c]*/ and torch/[e-n]*/ (#129769)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129769
Approved by: https://github.com/ezyang
2024-08-04 10:24:09 +00:00
Yidi Wu
2c1851f04e [export] fix output node's meta (#131706)
Summary:
This pr fixes all the places in strict export stack where the output node's meta is not preserved correctly. However, we're getting a new error for the test we intend to fix: `buck2 run caffe2/test/quantization:test_quantization -- -r "test_re_export_preserve_handle"`:

The `get_attr` nodes has wrong metadata. I guess there are more things need to be fixed to get it working but it's beyond the scope of this PR.

Test Plan: buck2 run caffe2/test/quantization:test_quantization -- -r "test_re_export_preserve_handle"

Differential Revision: D60198221

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131706
Approved by: https://github.com/yushangdi
2024-07-25 18:44:21 +00:00
Shangdi Yu
29e2e2afb6 Revert D59561509: Multisect successfully blamed "D59561509: [FX][export] DCE pass, check schema for node impurity (#130395)" for one test failure (#131341)
Summary:
This diff reverts D59561509
D59561509: [FX][export] DCE pass, check schema for node impurity (#130395) by yushangdi causes the following test failure:

Tests affected:
- [cogwheel:cogwheel_mtia_cmf_m5_shrunk_test#test_flow_with_verification](https://www.internalfb.com/intern/test/844425041436985/)

Here's the Multisect link:
https://www.internalfb.com/multisect/6533402
Here are the tasks that are relevant to this breakage:
T191383430: 10+ tests unhealthy for ads_mtia_inference

The backout may land if someone accepts it.

If this diff has been generated in error, you can Commandeer and Abandon it.

Test Plan: NA

Differential Revision: D60029318

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131341
Approved by: https://github.com/angelayi
2024-07-23 05:23:47 +00:00
PyTorch MergeBot
b9912f31ef Revert "[export] fix zero arg export in training_ir (#130990)"
This reverts commit 50436d5bdb.

Reverted https://github.com/pytorch/pytorch/pull/130990 on behalf of https://github.com/clee2000 due to failing some executorch and torchrec tests internally D60006710 ([comment](https://github.com/pytorch/pytorch/pull/130990#issuecomment-2243395316))
2024-07-22 16:49:25 +00:00
Yidi Wu
50436d5bdb [export] fix zero arg export in training_ir (#130990)
Fixed TrainingIRToRunDecomp failures for test_tensor_attribute_zero_args and also a few re-tracability failures because run_decomposition does a retracing.

**edit:** also remove the eliminate_dead_code() in _unlift because of one onnx test failure:
a constant tensor attr was lifted as constant_tensor input but it's not used in the graph after aot_autograd due to a short cut in its decomposition. This causes the setattr to be removed by eliminate_dead_code but the graph signature still contains the name of that buffer, which causes an inconsitency between the transformed graph and ep's original signature after _unlift. And it seems that this has happened a few times where some nodes are accidentally removed and we're in an inconsistent state.

The alternative of removing it would be: every time we call elimiate_dead_code, we verify the consistency of the graph with 1. the graph before transformation and 2. all the meta datas but i think this deserves a complete design.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130990
Approved by: https://github.com/pianpwk
2024-07-20 02:35:13 +00:00
Shangdi Yu
27ded03545 [FX][export] DCE pass, check schema for node impurity (#130395)
Change the default DCE pass to check node schema for impure nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130395
Approved by: https://github.com/angelayi, https://github.com/jgong5
2024-07-18 16:31:40 +00:00
PyTorch MergeBot
433ef4e444 Revert "[FX][export] DCE pass, check schema for node impurity (#130395)"
This reverts commit e22b0acc76.

Reverted https://github.com/pytorch/pytorch/pull/130395 on behalf of https://github.com/yushangdi due to breaking tests, need to rebase and fix ([comment](https://github.com/pytorch/pytorch/pull/130395#issuecomment-2235192986))
2024-07-18 02:46:03 +00:00
Shangdi Yu
e22b0acc76 [FX][export] DCE pass, check schema for node impurity (#130395)
Change the default DCE pass to check node schema for impure nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130395
Approved by: https://github.com/angelayi, https://github.com/jgong5
2024-07-18 00:55:20 +00:00
Shangdi Yu
ea4b80e6d6 [FX][export] strict DCE pass, check schema for node impurity (#130552)
Fixes the failure in `test/export/test_export_training_ir_to_run_decomp.py ` caused by dead code elimination removing node with side effects.

For background, in export, we may want to export higher-level IRs that are not functional, so we need to check for side effects more carefully.

 A call_function node is impure if it has at least one mutable argument.

Fixed the tests below:

test_to_module_with_mutated_buffer_multiple_update_sub_later
test_export_input_mutation_static_shape
test_buffer_util

Another attempt modifying the original DCE pass is made in PR #130395, but it breaks some other tests, so here we add a flag and use it for export only.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130552
Approved by: https://github.com/pianpwk
2024-07-12 15:43:27 +00:00
Wang, Eikan
1f302d6885 Support aten operations with out tensor (#124926)
This PR intends to support the aten operations with the `out` tensor.

Currently, the AOT compile always does **NOT** keep input tensor mutations. According to the comments, this is because it has not encountered such a use case.
> For now there's no use case involving keeping input mutations in the graph (which we can only do in the inference case anyway). We can add this later if we need to.

However, for aten operations, it is popular that the `out` tensor is an input parameter and needs to be mutated. This PR intends to support it by adding a `keep_inference_input_mutations` flag to `aot_inductor.keep_inference_input_mutations`. This flag can provide flexibility to the callee in deciding whether the AOT compile needs to keep input tensor mutations in the graph.

Take `clamp` as an example as follows.
```python
out_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(-2.0)
inp_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(1.0)
min_tensor = inp_tensor - 0.05
max_tensor = inp_tensor + 0.05
torch.clamp(input=inp_tensor, min=min_tensor, max=max_tensor, out=out_tensor)
```

W/O this PR
```python
def forward(self):
    arg0_1: "f32[128]"; arg1_1: "f32[128]"; arg2_1: "f32[128]"; arg3_1: "f32[128]";

    arg0_1, arg1_1, arg2_1, arg3_1, = fx_pytree.tree_flatten_spec([], self._in_spec)
    clamp_min: "f32[128]" = torch.ops.aten.clamp_min.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
    clamp_max: "f32[128]" = torch.ops.aten.clamp_max.Tensor(clamp_min, arg2_1);  clamp_min = arg2_1 = None
    return (clamp_max, clamp_max)
```

W/ this PR
```python
def forward(self):
    arg0_1: "f32[128]"; arg1_1: "f32[128]"; arg2_1: "f32[128]"; arg3_1: "f32[128]";

    arg0_1, arg1_1, arg2_1, arg3_1, = fx_pytree.tree_flatten_spec([], self._in_spec)
    clamp_min: "f32[128]" = torch.ops.aten.clamp_min.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
    clamp_max: "f32[128]" = torch.ops.aten.clamp_max.Tensor(clamp_min, arg2_1);  clamp_min = arg2_1 = None
    copy_: "f32[128]" = torch.ops.aten.copy_.default(arg3_1, clamp_max);  arg3_1 = clamp_max = None
    return (copy_,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124926
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/angelayi
2024-06-12 22:31:59 +00:00
PyTorch MergeBot
81e4e12f02 Revert "Support aten operations with out tensor (#124926)"
This reverts commit cba195c8ed.

Reverted https://github.com/pytorch/pytorch/pull/124926 on behalf of https://github.com/clee2000 due to newly added test broke in internal D58444103.  Test passed in OSS CI though ([comment](https://github.com/pytorch/pytorch/pull/124926#issuecomment-2163441547))
2024-06-12 16:20:04 +00:00
Wang, Eikan
cba195c8ed Support aten operations with out tensor (#124926)
This PR intends to support the aten operations with the `out` tensor.

Currently, the AOT compile always does **NOT** keep input tensor mutations. According to the comments, this is because it has not encountered such a use case.
> For now there's no use case involving keeping input mutations in the graph (which we can only do in the inference case anyway). We can add this later if we need to.

However, for aten operations, it is popular that the `out` tensor is an input parameter and needs to be mutated. This PR intends to support it by adding a `keep_inference_input_mutations` flag to `aot_inductor.keep_inference_input_mutations`. This flag can provide flexibility to the callee in deciding whether the AOT compile needs to keep input tensor mutations in the graph.

Take `clamp` as an example as follows.
```python
out_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(-2.0)
inp_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(1.0)
min_tensor = inp_tensor - 0.05
max_tensor = inp_tensor + 0.05
torch.clamp(input=inp_tensor, min=min_tensor, max=max_tensor, out=out_tensor)
```

W/O this PR
```python
def forward(self):
    arg0_1: "f32[128]"; arg1_1: "f32[128]"; arg2_1: "f32[128]"; arg3_1: "f32[128]";

    arg0_1, arg1_1, arg2_1, arg3_1, = fx_pytree.tree_flatten_spec([], self._in_spec)
    clamp_min: "f32[128]" = torch.ops.aten.clamp_min.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
    clamp_max: "f32[128]" = torch.ops.aten.clamp_max.Tensor(clamp_min, arg2_1);  clamp_min = arg2_1 = None
    return (clamp_max, clamp_max)
```

W/ this PR
```python
def forward(self):
    arg0_1: "f32[128]"; arg1_1: "f32[128]"; arg2_1: "f32[128]"; arg3_1: "f32[128]";

    arg0_1, arg1_1, arg2_1, arg3_1, = fx_pytree.tree_flatten_spec([], self._in_spec)
    clamp_min: "f32[128]" = torch.ops.aten.clamp_min.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
    clamp_max: "f32[128]" = torch.ops.aten.clamp_max.Tensor(clamp_min, arg2_1);  clamp_min = arg2_1 = None
    copy_: "f32[128]" = torch.ops.aten.copy_.default(arg3_1, clamp_max);  arg3_1 = clamp_max = None
    return (copy_,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124926
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/angelayi
2024-06-11 04:35:27 +00:00
Aaron Orenstein
7c12cc7ce4 Flip default value for mypy disallow_untyped_defs [6/11] (#127843)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127843
Approved by: https://github.com/oulgen
ghstack dependencies: #127842
2024-06-08 18:49:29 +00:00
Matthew Hoffman
81277baa0c Remove removed ruff rule TRY200 (#126256)
My TOML linter is complaining that "TRY200" is not acceptable for the `tool.ruff.lint` schema.

From the ruff docs: https://docs.astral.sh/ruff/rules/reraise-no-cause/

> This rule has been removed and its documentation is only available for historical reasons.
>
> This rule is identical to [B904](https://docs.astral.sh/ruff/rules/raise-without-from-inside-except/) which should be used instead.

and we are currently explicitly ignoring B904.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126256
Approved by: https://github.com/Skylion007
2024-05-17 16:31:05 +00:00
Pian Pawakapan
946e202c07 [export] Restore user input names to unlifted graph modules (#124765)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/122842

Currently, calling ep.module() on an ExportedProgram leads to a GraphModule with a default forward signature (e.g. arg_0, arg_1, ...). This leads to original placeholder names disappearing for retracing/re-exporting.

Fixing this issue by creating a forward_arg_names field (will take renaming suggestions for this), that stores the positional & keyword arg names that are used. These names aren't present in the call_spec currently stored, and requires a major version bump for the ExportedProgram schema.

Test Plan: Tests exist for export, but names are now changed from generic (e.g. arg_0, arg_1) to follow user inputs (e.g. x, y)

Differential Revision: D56484994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124765
Approved by: https://github.com/zhxchen17
2024-04-29 20:58:17 +00:00
angelayi
e8836759d0 [export] Add effect token to export (#121424)
Following the creation of effect tokens (https://github.com/pytorch/pytorch/pull/120296), we want to now add support for these tokens in export because the calling/returning convention has changed. The inputs are now `(tokens, params, buffers, constants, user_inputs)` and the outputs are `(tokens, buffer_mutations, user_mutations, user_outputs)`. The graph looks something like:
```
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %attr : [num_users=2] = placeholder[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %with_effects : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%arg0_1, _TorchScriptTesting.takes_foo.default, %attr, %arg1_1), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 0), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 1), kwargs = {})
    %with_effects_1 : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%getitem, _TorchScriptTesting.takes_foo.default, %attr, %getitem_1), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 0), kwargs = {})
    %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %getitem_3), kwargs = {})
    return (getitem_2, add)
```

During unlifting, we will first remove the tokens and with_effect calls using the `remove_effect_tokens` pass. (cc @SherlockNoMad on the pass to remove tokens). This is so that this won't change the calling conventions when retracing. The graph after unlifting looks something like:
```
graph():
    %attr_1 : [num_users=2] = get_attr[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %takes_foo_default_1 : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %arg1_1), kwargs = {})
    %takes_foo_default : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %takes_foo_default_1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %takes_foo_default), kwargs = {})
    return (add,)
```

Serialization support will be added in a followup.
Note: tokens only affect custom ops that take in ScriptObjects, not ScriptObject methods yet.

Differential Revision: [D54639390](https://our.internmc.facebook.com/intern/diff/D54639390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121424
Approved by: https://github.com/tugsbayasgalan
2024-03-09 02:43:26 +00:00
Zhenghao Zhao
af93849a3a [pt2 export] small fix on non_persistent buffer unlift (#120715)
Summary: Change to get_buffer from the input plain_graph_module instead of the new stateful_gm when restoring non_persistent buffers, since the stateful_gm doesn't contain the buffer yet.

Test Plan:
Added test case.
`buck test caffe2/test:test_export -- test_unlift_nonpersistent_buffer`

Differential Revision: D54216772

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120715
Approved by: https://github.com/zhxchen17
2024-03-01 20:20:00 +00:00
Michael Suo
bf4e171539 [export] support non-persistent buffers (#118969)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1817

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

As a side effect, this diff tightened up quite a few sloppy  behaviors around state dict handling:
- Tensor attributes were getting promoted to be buffers—bad!
- Tracing through a module not in the children of the root module would add its parameters/buffers to the state dict—bad!

This behavior is unlikely to show up in user code since the model would be totally broken, but did show up in a bunch of tests.

#buildmore

Test Plan:
unit tests
sandcastle

Differential Revision: D53340041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118969
Approved by: https://github.com/guangy10, https://github.com/huydhn, https://github.com/titaiwangms
2024-02-02 19:16:08 +00:00
PyTorch MergeBot
221747507d Revert "[export] support non-persistent buffers (#118612) (#118722)"
This reverts commit a43c28368c.

Reverted https://github.com/pytorch/pytorch/pull/118722 on behalf of https://github.com/atalman due to broke linux-jammy-py3-clang12-executorch ([comment](https://github.com/pytorch/pytorch/pull/118722#issuecomment-1921484565))
2024-02-01 14:39:29 +00:00
Angela Yi
7e0ea0d5df [export] Only deepcopy graph in unlift (#118821)
Summary: We only need to deepcopy the graph because we're modifying the graph by unlifting its parameter/buffer inputs. We don't need to deepcopy the graph module state/contents. This causes an error when the graph module contains an ExecuTorch LoweredModule which stores tensors.

Test Plan: Fixes the following diff

Differential Revision: D53290077

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118821
Approved by: https://github.com/tugsbayasgalan
2024-02-01 09:00:22 +00:00
Michael Suo
a43c28368c [export] support non-persistent buffers (#118612) (#118722)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1769

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

Test Plan: added a unit test

Differential Revision: D53253905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118722
Approved by: https://github.com/SherlockNoMad, https://github.com/angelayi
2024-02-01 00:36:09 +00:00
suo
d0627cc2af [export] do not rewrite state dict when unlifting (#118611)
This is Very Bad; changing state dict keys violates one of the key contracts we have, which is "do not mess with the state dict".

Change unlift to use a similar `_assign_attr` approach that fx.GraphModule and unflatten do.

Also took the opportunity to improve the interface of `_assign_attr` to be more general.

Differential Revision: [D53139277](https://our.internmc.facebook.com/intern/diff/D53139277/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118611
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608, #118609, #118610
2024-01-30 19:14:19 +00:00
suo
be90ab7efd [export] do not unlift cond/map submodules (#118610)
I don't think we should be unlifting HOO submodules.

What is the constract of unlifting? It is: restore the original calling convention of the module, undoing the transformation in which we lift parameters, buffers, and constants to inputs in the graph.

Unlifting does *not* make any guarantees about what's going on inside the module. It's still a flat module. So why should we lift the cond/map submodules? It doesn't have anything to do with the contract stated above; it's some internal stuff that doesn't affect how the module will be called.

Further, this code as written modifies the state dict; adding a new buffer that is actually duplicate of a previous buffer. Modifying the state dict from the original eager module is never correct.

Differential Revision: [D53160713](https://our.internmc.facebook.com/intern/diff/D53160713/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118610
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608, #118609
2024-01-30 19:14:18 +00:00
suo
4ee8aa6028 [export] adopt KeyPath API in nonstrict mode (#118609)
This PR rewrites two paths to use the newly-added keypaths API in pytree:
First: we were hand-rolling a tree_map during fakification because we wanted to track sources. This PR uses keypaths instead, which can do the same thing without needing custom code.

Second: our constraint error formatting was referencing placeholder names in error messages. These placeholder names are not otherwise user-visible, so they are super confusing to users (e.g. "which input does arg1_3 correspond to?"). This diff uses the `keystr` API to format the error message.

This necessitated some small refactors—generating the keystr is expensive so doing it in an f-string was very bad.

It can also be further improved—we can inspect the signature so that instead of `*args[0]` we can give people the actual argument name, which would be the ideal UX. But leaving that for later.

Differential Revision: [D53139358](https://our.internmc.facebook.com/intern/diff/D53139358/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118609
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608
2024-01-30 19:14:11 +00:00
suo
ca090b2c77 [export] do not use tree_flatten_spec (#118608)
tree_flatten_spec is bad; it isn't synced up with `register_pytree_node` so it will not handle arbitrary custom pytrees. It's also not really maintained.

We only use it for two purposes:
- To retain kwarg ordering stability, so that if the user passes in kwargs in a different order things will still work.
- To do "structural" checks that ignore types.

In both cases, tree_flatten_spec is probably *not* the ideal way to implement the desired behavior.

## kwargs ordering
- tree_flatten_spec overwrites the behavior of ALL dictionaries, not just kwargs. This is not correct, dictionary ordering is meaningful in Python, and it's pretty trivial to write a program that relies on dict ordering.
- For kwargs, we do sort of expect that the order in which arguments are passed shouldn't matter. BUT there is one exception: `**kwargs`. In fact, [PEP 468](https://peps.python.org/pep-0468/) was introduced specifically to clarify that ordering does matter when the function being called uses `**kwargs`.

In this diff I introduce a utility function that *only* reorders kwargs. This gets us most of the way to correct—dicts are no longer reordered, but kwargs can be passed in any order.

A "fully correct" solution would need fix the corner case from PEP468. We could detect whether the top-level fn being traced uses `**kwargs` (via `inspect`), then serialize a flag for it. In ExportedProgram, we would check that flag and only re-order if `**kwargs` was unused; otherwise error if the key order doesn't match. This is a super corner case though, so I'll file it as a followup task.

## structural equivalence checking

This is another use case, where again `tree_flatten_spec` is too broad. Generally we want to treat a precise two types as the same, not override the behavior of comparison generally. So I introduce an `is_equivalent` util for this purpose.

Differential Revision: [D53168420](https://our.internmc.facebook.com/intern/diff/D53168420/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118608
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607
2024-01-30 19:14:04 +00:00
Angela Yi
413a434846 [export] Convert all export tests to .module() (#118425)
Test Plan: CI

Differential Revision: D53075379

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118425
Approved by: https://github.com/suo
2024-01-29 23:06:54 +00:00
Angela Yi
5c56822be2 [export] Various fixes to .module() (#118272)
Summary: While turning on .module() for all the export tests, I uncovered some bugs with .module() and while fixing them I ended up rewriting some of the code... Some of the bugs were:

* bad kwargs support on the unlifted module
* no support for user input mutations
* (at the commit hash i was working off of) no support for custom objects
* there were no tests on unlifting weights from cond/map submodules

Test Plan: CI

Differential Revision: D53075380

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118272
Approved by: https://github.com/suo
2024-01-26 21:05:07 +00:00
Angela Yi
a93940b5db [export] Allow constant outputs + None input/outputs (#117894)
Added support for constant outputs. We will just embed the constant directly into the output, like `return (x, 1)`.
Also adds support for None input/outputs. For None inputs we address it the same way we do to constants, which is that a placeholder with no users will be inserted into the graph, and the None will be embedded into whatever operator is using the None. For None outputs, we will also address the same way we do constants, which is that we embed it into the output, like `return (x, None)`.

Differential Revision: D52881070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117894
Approved by: https://github.com/zhxchen17
2024-01-25 23:37:34 +00:00
suo
d84173c025 [export] fix unlifting of custom class constants (#117979)
we didn't have a test covering this case, add one.

Aside: we should invest in actually unit testing the lifting/unlifting passes, both separately and also against each other. I have a diff cooking for that.

Differential Revision: [D52962180](https://our.internmc.facebook.com/intern/diff/D52962180/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117979
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #115222, #117978
2024-01-23 05:51:00 +00:00
Yidi Wu
2bc7da1ab7 [HigherOrderOp] change signature of map_impl (#117161)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1580

This PR changes the schema of map_impl from map_impl(f, num_mapped, *operands) to map_impl(f, mapped_args: Tuple, moperands: Tuple). This is to prepare for turning on dynamo for eager mode map, where we want to get rid of the num_mapped scalar.

Test Plan: Existing tests.

Differential Revision: D52495413

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117161
Approved by: https://github.com/angelayi, https://github.com/tugsbayasgalan
2024-01-13 02:50:46 +00:00
Angela Yi
6413511713 [export][refactor][4/n] Make equality_constraints optional (#116233)
Summary: needed to remove equality_contraints eventually :P

Test Plan: CI

Differential Revision: D52351709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116233
Approved by: https://github.com/tugsbayasgalan
2024-01-05 00:50:52 +00:00
Xuehai Pan
199e07f108 [pytree][BE] update treespec num_children access (#116370)
Change `len(treespec.children_spes) -> treespec.num_children`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116370
Approved by: https://github.com/Skylion007
2023-12-24 20:54:32 +00:00
Bradley Davis
ad3c0b2c00 [torch.export] fixes for unlifting lifted tensor constants (#116266)
Summary: lifted tensor constants were not being treated the same way as named buffers when unlifting, i.e. getting name correction to convert "." in FQNS to "_" for proper names. Additionally, future torchbind object support will allow objects to be registered, so only register_buffer for lifted constants if the value is a tensor.

Differential Revision: D52367846

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116266
Approved by: https://github.com/angelayi
2023-12-22 04:46:25 +00:00
angelayi
b6a4866330 [export][reland][refactor][3/n] Move unlift to separate file (#115558)
Reland of https://github.com/pytorch/pytorch/pull/114787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115558
Approved by: https://github.com/zhxchen17, https://github.com/atalman
ghstack dependencies: #115556, #115557
2023-12-12 05:37:07 +00:00
atalman
749f0c90e1 Revert "[export][refactor][3/n] Move unlift to separate file (#114787)" (#115457)
Github First Oncall: This reverts commit 967863d91d.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115457
Approved by: https://github.com/osalpekar
2023-12-08 22:33:28 +00:00
angelayi
967863d91d [export][refactor][3/n] Move unlift to separate file (#114787)
Differential Revision: [D51823960](https://our.internmc.facebook.com/intern/diff/D51823960)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114787
Approved by: https://github.com/ydwu4
ghstack dependencies: #114764, #114768
2023-12-06 16:46:47 +00:00