functorch used to have a switch that enables/disables autograd.Function.
That switch now enables/disables torch.autograd.function._SingleLevelFunction, so
I've renamed it accordingly.
We could just delete the switch because users should not be directly
working with torch.autograd.function._SingleLevelFunction. However,
it was useful for debugging when something went wrong when I was
implementing the autograd.Function <> functorch interaction, so I want
to keep it around as a debugging tool for a while since the code is
already there.
Test Plan:
- updated tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92025
Approved by: https://github.com/soulitzer
We don't actually need `output_shapes` to implement
`generate_vmap_rule=True` support for autograd.Function.
- We need this in the vjp (backward) case because autograd automatically
reduces grad_inputs to inputs and we need to replicate that behavior.
In order to replicate that behavior, we recorded the original input
shapes so we know how to reduce the grad_input.
- There is no such behavior for forward-mode AD, so we don't need to
pass an `output_shapes` to reductify.
This PR simplifies the API of `reductify` and `reductify_leaf`. Instead
of accepting `input_shape_without_bdim` and `allow_expanded_grad`, we
now combine these into a single argument,
`reduce_to_input_shape_without_bdim`.
- if it is None, then we don't do anything
- if it is not-None and a shape, then we will reduce the grad to the
provided shape.
Test Plan:
- updated original unittests
- wait for test suite
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92024
Approved by: https://github.com/soulitzer
This PR:
- adds a nice error message if the user doesn't follow the API of the
vmap staticmethod correctly. That is, the user must return two
arguments from the vmap staticmethod API: (outputs, out_dims), and
out_dims must be a PyTree with either the same structure as `outputs`
our be broadcastable to the same structure as `outputs`.
- Fixes an edge case for out_dims=None. out_dims is allowed to be None,
but wrap_outputs_maintaining_identity was treating "None" as "This is
not the vmap case"
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92023
Approved by: https://github.com/soulitzer
This PR:
- changes generate_vmap_rule to either be True or False. Previously it
could be True, False, or not set. This simplifies the implementation a
bit.
- changes the vmap staticmethod to always be on the autograd.Function
rather than sometimes defined.
This is how the other staticmethod (forward, backward, jvp) are
implemented and allows us to document it.
There are 4 possible states for the autograd.Function w.r.t. to the
above:
- generate_vmap_rule is True, vmap staticmethod overriden. This raises
an error when used with vmap.
- generate_vmap_rule is False, vmap staticmethod overriden. This is
valid.
- generate_vmap_rule is True, vmap staticmethod not overriden. This is
valid.
- generate_vmap_rule is False, vmap staticmethod not overriden. This
raises an error when used with vmap.
Future:
- setup_context needs the same treatment, but that's a bit tricker to
implement.
Test Plan:
- new unittest
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91787
Approved by: https://github.com/soulitzer
It turns out that we *do* need to update *_scatter ops to return the exact same strides as their inputs. I added a test to `test/test_functionalization.py`, which now trips thanks to Ed's functionalization stride debugging check. It only actually ends up tripping silent correctness if you try to .backward() on that function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91029
Approved by: https://github.com/ezyang
Design document:
https://docs.google.com/document/d/1bIQkWXy3J35_20c_a5kchikabBW5M8_uRAhl0BIMwU4/edit
This PR adds a `generate_vmap_rule` option (default False) to autograd.Function.
By setting it to True, a user promises to us that their autograd.Function's
{forward, backward, jvp}, if defined, only uses PyTorch operations, in addition to the other
limitations of autograd.Function+functorch (such as the user not
capturing any Tensors being transformed over from outside of the
autograd.Function).
Concretely, the approach is:
- we update `custom_function_call` to accept an additional
`generate_vmap_rule` argument.
- The vmap rule for `custom_function_call` and `generate_vmap_rule=True`
is: we construct a vmapped version of the autograd.Function and dispatch
on it.
- The vmapped version of the autograd.Function can be thought of like
the following: if we have an autograd.Function Foo, then
VmappedFoo.apply(in_dims, ...) has the same semantics as
vmap(Foo.apply, in_dims...)
- VmappedFoo's forward, setup_context, and backward staticmethod are
vmapped versions of Foo's staticmethods.
- See the design doc for more motivation and explanation
Test Plan:
- This PR introduces additional autograd.Function with the suffix "GenVmap" to
autograd_function_db.
- There are also some minor UX tests
Future:
- jvp support
- likely more testing to come, but please let me know if you have
cases that you want me to test here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90966
Approved by: https://github.com/soulitzer
As seen in
https://docs.google.com/document/d/1bIQkWXy3J35_20c_a5kchikabBW5M8_uRAhl0BIMwU4/edit
`reductify_leaf(grad_input, ...)` is a helper function that processes a
single grad_input Tensor. The reason why we need it is:
- the grad_input has some optional bdim
- the input has some optional bdim
- if these are different, we need to coerce the grad_input into having
the same shape as the input, either by reducing or expanding the
grad_input.
Note that there is a special case in autograd that the user is allowed
to return a grad_input Tensor that is an expanded version of the
original input tensor. In this case, autograd automatically reduces
grad_input to the same shape as the input. Unfortunately this logic
doesn't work when bdims are involved, so we manually handle it in
`reductify_leaf`.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90965
Approved by: https://github.com/soulitzer
This PR:
- adds VmapInterpreter.randomness. This returns the randomness option
the user provided in vmap(..., randomness=...)
- adds randomness in the info object passed to the vmap staticmethod of
autograd.Function. This is so that the user can handle random operations
on their own terms (if randomness="error", and if the autograd.Function
has random operations, then it is the user's responsiblity to raise an
error).
Test Plan:
- updated unittest
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90789
Approved by: https://github.com/samdow, https://github.com/soulitzer
Motivation
- These were previously defined in functorch. They are not
functorch-specific, so I'm moving them to torch.autograd.forward_ad and
the autograd python bindings.
- I need this to avoid some of my cyclic import problems.
Should these be public APIs? Probably. Though this needs discussion, so
punting it to the future.
Test Plan:
- moved the tests of these from test/functorch/test_eager_transforms.py
to test/test_autograd.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90240
Approved by: https://github.com/soulitzer
This PR adds a `vmap` staticmethod to autograd.Function and a
corresponding vmap kernel for custom_function_call. These two items mean
that autograd.Function with a vmap staticmethod can be used with vmap.
```py
class NumpyMul(torch.autograd.Function)
staticmethod
def forward(x, y):
return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
staticmethod
def setup_context(ctx, outputs, x, y):
ctx.save_for_backward(x, y)
staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
gx = None
if isinstance(x, torch.Tensor) and x.requires_grad:
gx = NumpyMul.apply(grad_output, y)
gy = None
if isinstance(y, torch.Tensor) and y.requires_grad:
gy = NumpyMul.apply(grad_output, x)
return gx, gy
staticmethod
def vmap(info, in_dims, x, y):
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim else y.unsqueeze(-1)
result = NumpyMul.apply(x, y)
result = result.movedim(-1, 0)
return result, 0
```
API Spec
- the staticmethod takes two arguments (info, in_dims) as well as the
unexpanded inputs (x, y).
- If we think about it as `vmap(info, in_dims, *args)`, `in_dims` is a
pytree with the same tree structure as args. It has None if the arg is
not being vmapped over and an integer vmapped dimension index if it is.
- `info` is an object with metadata about the vmap. It currently has one
field, `info.batch_size`. In the future we can extend this by adding
things like the randomness information.
- If there is a single vmap going on, (x, y) are NOT BatchedTensors,
they've already been unpacked.
- We expect the user to return a `(outputs, out_dims)` tuple. `out_dims`
must "broadcast" to the same pytree structure as `outputs`.
Semantics
- vmap(NumpyMul.apply)(x) will apply the vmap staticmethod if there is
one and will never actually run NumpyMul.forward.
- In order for the autograd.Function to support nested vmap (e.g.,
`vmap(vmap(NumpyMul.apply))(x)`, then the vmap staticmethod must call
into operations that vmap understands (i.e. PyTorch operators or more
autograd.Function).
At a high level, this PR:
- adds a vmap rule for custom_function_call
Testing
- Added some tests for in_dims and info
- Added vmap staticmethod to most of the autograd.Function in
autograd_function_db and sent them through functorch's vmap-related
OpInfo tests
Future
- Better error messages if the user gets the return contract wrong. I
didn't include them in this PR because it might involve a refactor of
some of the existing code in functorch/_src/vmap.py that will add
~200LOC to the PR, but LMK if you'd prefer it here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90037
Approved by: https://github.com/samdow, https://github.com/soulitzer
Happy to split this PR more if it helps.
This PR adds functorch.grad support for autograd.Function. There's a lot
going on; here is the high level picture and there are more details as
comments in the code.
Mechanism (PyOperator)
- Somehow, autograd.Function needs to dispatch with functorch. This is
necessary because every layer of functorch needs to see the
autograd.Function; grad layers need to preserve the backward pass.
- The mechanism for this is via PyOperator. If functorch transforms are
active, then we wrap the autograd.Function in a `custom_function_call`
PyOperator where we are able to define various rules for functorch
transforms.
- `custom_function_call` has a rule for the functorch grad transform.
autograd.Function changes
- I needed to make some changes to autograd.Function to make this work.
- First, this PR splits autograd.Function into a _SingleLevelFunction
(that works with a single level of functorch transform) and
autograd.Function (which works with multiple levels). This is necessary
because functorch's grad rule needs some way of specifying a backward
pass for that level only.
- This PR changes autograd.Function's apply to eitehr call
`custom_function_call` (if functorch is active) or super().apply (if
functorch isn't active).
Testing
- Most of this PR is just testing. It creates an autograd.Function
OpInfo database that then gets passed to the functorch grad-based tests
(grad, vjp, vjpvjp).
- Since functorch transform tests are autogenerated from OpInfo tests,
this is the easiest way to test various autograd.Function with
functorch.
Future
- jvp and vmap support coming next
- better error message (functorch only supports autograd.Function that
have the optional setup_context staticmethod)
- documentation to come when we remove the feature flag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89860
Approved by: https://github.com/soulitzer
This will be the last disruptive functorch internals change.
Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.
Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times
Test Plan:
- wait for tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90091
Approved by: https://github.com/anijain2305, https://github.com/ezyang
This will be the last disruptive functorch internals change.
Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.
Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times
Test Plan:
- wait for tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88756
Approved by: https://github.com/ezyang
This PR teaches PyDispatcher and PyOperator about functorch transforms.
It is important that PyDispatcher/PyOperator dispatch with functorch
transforms, because this is our plan for higher-order operators
(operators that accept functions as arguments). Examples of these
include:
- functorch transforms over the existing cond operator (control flow)
- autograd.Function support for functorch (which I am working towards),
- AOTDispatcher (should be a higher order operator)
Concretely, the problem with teaching PyDispatcher/PyOperator about
functorch is that the stack-based dispatching logic (DynamicLayerStack)
is hidden inside the fallbacks for two dispatch keys
(DynamicLayer{Front, Back}). PyDispatcher doesn't know about C++ boxed
fallbacks, our plan on record for that is that we need to reimplement
all of them in Python (but can call helper functions in C++ to make our
lives easier).
Instead of exposing all of what DynamicLayer{Front, Back} do to python,
this PR takes the approach of re-implementing part of the stack-based
dispatching in Python. The motivation is that this is more sane and
follows what the "ideal" implementation of functorch would have been:
- each transform should be a "mode"
- there should be no TLS dispatch key set hackery. functorch needs to do
this hackery today to re-use VariableType implementations.
This PR:
- exposes the DynamicLayerStack to Python
- The DynamicLayerStack is a stack of Interpreters.
These get exposed to Python as well.
- Interpreters can run operations (Interpreter.process) or lower them to
the next interpreter in the stack (Interpreter.lower)
- To use a PyOperator with functorch transforms, a developer needs to
register a rule for each transform (vmap, grad, jvp, ...).
- The PyOperator API is NOT user-facing. Things like autograd.Function
support for functorch will end up going through the autograd.Function
API.
Question for reviewers:
- Does this design make sense?
- I'm trying to split up the "functorch support for autograd.Function"
work into logical pieces. Would it be better if I didn't? (the full
thing is a bit long - 1000-2000 LOC).
Test Plan:
- new tests that construct PyOperator and compose them with functorch
transforms
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88785
Approved by: https://github.com/samdow, https://github.com/soulitzer