This PR is a result of collaboration with @rdspring1 and @mruberry on primTorch.
It adds the following prims:
- `fmax`
- `fmin`
- `fmod`
And adds the following refs:
- `fmax`
- `fmin`
- `fmod`
- `logical_xor`
The work is in progress as there are some tests that fail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78023
Approved by: https://github.com/mruberry
Feels good to delete it from `torch._decomps`. This is mainly to clarify the process for me -
Seems like there's still some components missing of the `torch <-> refs` mapping? For example, seems like methods don't work yet for mapping from torch <-> refs, and neither do the meta tests? (cc: @ezyang).
If I replace the `torch` with `refs`, then the tests seem to pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78041
Approved by: https://github.com/mruberry
This PR adds the item, equal, any, and all references.
While doing this I found the following issues:
- https://github.com/pytorch/pytorch/issues/78070
- https://github.com/pytorch/pytorch/issues/78071
And I fixed a bug where the `convert_element_type` prim could not convert tensors requiring grad to datatypes that don't require grad.
Creating the item reference required adding item as a prim, but per @ngimel's suggestion I removed the prims for any and all and implemented them as references, so this is net negative one prim.
Reference OpInfos are added for any and all, but item and equal don't even have regular OpInfos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78072
Approved by: https://github.com/ngimel
This PR...
**Issues Found**
- https://github.com/pytorch/pytorch/issues/78058
- https://github.com/pytorch/pytorch/issues/78054
- https://github.com/pytorch/pytorch/issues/78053
- https://github.com/pytorch/pytorch/issues/78050
- https://github.com/pytorch/pytorch/issues/77932
**Testing**
- disables stride consistency checks in test_ops and test_meta pending resolution of https://github.com/pytorch/pytorch/issues/78050
- skips chalf in reference tests (addressing https://github.com/pytorch/pytorch/issues/78054)
- splits test test_python_reference_consistency in one test for the ctx where torch.foo is torch.foo, and another for when torch.foo is refs.foo
- updates test names to be more natural and consistent:
- test_python_reference_errors -> test_python_ref_errors
- test_python_reference_consistency -> test_python_ref and test_python_ref_torch_fallback
- test_python_reference_meta_functions -> test_python_ref_meta
- test_reference_testing -> test_numpy_ref
- updates test_python_ref and test_python_ref_torch_fallback to check that the reference is more accurate than the torch op if the reference and torch op results are not close, a warning is raised when this occurs (addressing https://github.com/pytorch/pytorch/issues/77687)
- adds reference inputs for broadcast_tensors
- Updates the "fill_" OpInfo to "fill", adding a NumPy reference and making it an elementwise unary operator
- Adds 1D no element sample inputs to the cat OpInfo and updates the NumPy reference to handle them and type promotion correctly
- Adds reference inputs for elementwise ternary operations, like clamp
- Adds a NumPy reference for clamp
- Adds reference inputs to where's OpInfo
- Makes softplus an elementwise unary OpInfo
- Removes the great majority of Python reference OpInfo skips and xfails due to the above test changes
- Adds Python reference OpInfos for fill, dropout, clamp, broadcast_tensors, and where
**Prims**
- adds the fill, empty_strided, and uniform prims
- removes the empty, empty_like, full, and full_like prims -- these are now references that use empty_strided and fill
- renames the "concatenate" and "select" prims to "cat" and "where", respectively, to be consistent with PyTorch
- extends the `_elementwise_meta` operation to accepts tensors that don't participate in type promotion, like the `cond` tensor in `where`
- fixes a bug in the stride propagation of broadcast_in_dim
- moves some error checks from prims.cat to prims.where to refs.cat and refs.where, respectively, consistent with our new policy of doing as much error checking in the ref as possible
**Utils**
- adds the canoicalize_device, extract_shape, and extract_shape_from_varargs helpers
- adds the elementwise_unary_scalar_wrapper -- this allows elementwise unary operators to take and return scalar values (ex. refs.sin(1) will return .84...)
**Refs**
- adds the fill, broadcast_tensors, clamp, empty_strided, ones, zeros, and uniform references
- adds the nn.functional.dropout reference
- fixes refs.cat to handle 1D tensors with no inputs consistent with eager mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78026
Approved by: https://github.com/ngimel
This PR...
**Issues Found**
- https://github.com/pytorch/pytorch/issues/78058
- https://github.com/pytorch/pytorch/issues/78054
- https://github.com/pytorch/pytorch/issues/78053
- https://github.com/pytorch/pytorch/issues/78050
- https://github.com/pytorch/pytorch/issues/77932
**Testing**
- disables stride consistency checks in test_ops and test_meta pending resolution of https://github.com/pytorch/pytorch/issues/78050
- skips chalf in reference tests (addressing https://github.com/pytorch/pytorch/issues/78054)
- splits test test_python_reference_consistency in one test for the ctx where torch.foo is torch.foo, and another for when torch.foo is refs.foo
- updates test names to be more natural and consistent:
- test_python_reference_errors -> test_python_ref_errors
- test_python_reference_consistency -> test_python_ref and test_python_ref_torch_fallback
- test_python_reference_meta_functions -> test_python_ref_meta
- test_reference_testing -> test_numpy_ref
- updates test_python_ref and test_python_ref_torch_fallback to check that the reference is more accurate than the torch op if the reference and torch op results are not close, a warning is raised when this occurs (addressing https://github.com/pytorch/pytorch/issues/77687)
- adds reference inputs for broadcast_tensors
- Updates the "fill_" OpInfo to "fill", adding a NumPy reference and making it an elementwise unary operator
- Adds 1D no element sample inputs to the cat OpInfo and updates the NumPy reference to handle them and type promotion correctly
- Adds reference inputs for elementwise ternary operations, like clamp
- Adds a NumPy reference for clamp
- Adds reference inputs to where's OpInfo
- Makes softplus an elementwise unary OpInfo
- Removes the great majority of Python reference OpInfo skips and xfails due to the above test changes
- Adds Python reference OpInfos for fill, dropout, clamp, broadcast_tensors, and where
**Prims**
- adds the fill, empty_strided, and uniform prims
- removes the empty, empty_like, full, and full_like prims -- these are now references that use empty_strided and fill
- renames the "concatenate" and "select" prims to "cat" and "where", respectively, to be consistent with PyTorch
- extends the `_elementwise_meta` operation to accepts tensors that don't participate in type promotion, like the `cond` tensor in `where`
- fixes a bug in the stride propagation of broadcast_in_dim
- moves some error checks from prims.cat to prims.where to refs.cat and refs.where, respectively, consistent with our new policy of doing as much error checking in the ref as possible
**Utils**
- adds the canoicalize_device, extract_shape, and extract_shape_from_varargs helpers
- adds the elementwise_unary_scalar_wrapper -- this allows elementwise unary operators to take and return scalar values (ex. refs.sin(1) will return .84...)
**Refs**
- adds the fill, broadcast_tensors, clamp, empty_strided, ones, zeros, and uniform references
- adds the nn.functional.dropout reference
- fixes refs.cat to handle 1D tensors with no inputs consistent with eager mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78026
Approved by: https://github.com/ngimel
Adds `exp2`, `log10` to the prims (both also exist in C++ lib and Intel SIMD intrinsic has `exp2`)
Adds `exp2`, `log10`, `frac` to refs with corresponding entries to OpInfo.
Tried to decompose `exp2` (before adding it as prim) as
* `exp(log(2) * x)` but it wasn't stable at large numbers.
* `pow(2, x)` in which case there was stride mismatch. At cursory look, `pow` tries to preserve stride of first arg if possible.
Tried to decompose `log10` (before adding it as prim) as
* `log(x) / log(10)` passed for real dtypes. Failed for complex at extremals. Probably related to https://github.com/pytorch/pytorch/issues/52332 (not a 100% sure)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78046
Approved by: https://github.com/mruberry
Originally, when these were written, they simply used the naive strategy of "upcast all inputs to floats, and downcast all inputs back". In addition to being... not quite what the kernels did, they also didn't capture some additional semantics. Namely, that the norms (except for layer norm on CPU! cc: @ngimel) return fp32 for the mean and rstd values.
Also, folks didn't like that I wrote `native_layer_norm` in terms of `native_batch_norm`. Which is fair - so I refactored the common logic into a `normalize` function.
cc: @jansel / @bertmaher , who've been looking at lowering layer norm/batch norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77407
Approved by: https://github.com/bertmaher
* Add support for `log2, isinf, zeros_like`
* Add primitives for `log2` and `is_infinite`
I left a TODO to remove the `is_infinite` prim and to implement `isinf` reference using `isfinite` and `isnan`.
We're missing `real` and `imag` ops to handle complex tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77807
Approved by: https://github.com/mruberry
This PR...
**Filed the Following Issues**
- https://github.com/pytorch/pytorch/issues/77553
- https://github.com/pytorch/pytorch/issues/77526
- https://github.com/pytorch/pytorch/issues/77600
**Testing**
- Updates test_dtypes to longer attempt to test the backward of sample inputs where no inputs require grad
- Adds a new test_python_reference_errors; it ensures the meta operations for references throw errors as expected
- Updates compare_tensor_meta to better handle CUDA devices, and (temporarily) restricts stride checking to the CUDA device type
- Elementwise unary and elementwise binary operators now have arbitrarily strided reference inputs
- Reference inputs for _like functions are added
- An OpInfo for torch.empty is added
- Reference inputs for torch.clone are added
- A NumPy reference for clone is added
- Adds OpInfos for refs.empty and refs.empty_like
**Prims**
- Renames the "max" and "min" prims have been renamed to "maximum" and "minimum," respectively, to better conform to their ATen names
- Adds the empty, empty_like, full, and full_like prims
- Fixes the elementwise meta function's stride propagation
- Fixes clone's meta function's stride propagation
- Fixes convert_element_type's meta's stride propagation
- Adds a (temporary) _to_dtype pprivate prim that casts a tensor while preserving its stride permutation
- Removes the _set prim comment
- Adds utils.compute_elementwise_output_strides, which computes the correct output strides for elementwise operations
- Corrects an issue where utils.make_contiguous_strides_for was creating the incorrect strides for tensors with no elements
**References**
- Adds the empty, empty_like, full, full_like, and ones_like refs
- Extends make_elementwise_unary_reference to accept an additional callable to perform extra input validation
- Adds an extra validation function to handle refs.neg(BoolTensor)
- Updates the isfinite ref to call ones_like when appropriate
- Models Python scalar handling for elementwise binary operations
- Added a 64 dim check for the amin and amax references
- opmath is now a flag that can be set separately for cpu and CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77542
Approved by: https://github.com/ezyang
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__
While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient. So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic. Here's whats
new:
- Expected failure / skip is now done on a per function call basis,
rather than the entire test. This means that separate OpInfo
samples for a function don't affect each other.
- There are now only two lists: expect failure list (where the test
consistently fails on all runs) and skip list (where the test
sometimes passes and fails.
- We explicitly notate the dtype that failed. I considered detecting
when something failed on all dtypes, but this was complicated and
listing everything out seemed to be nice and simple. To keep the
dtypes short, I introduce a shorthand notation for dtypes.
- Conversion to meta tensors is factored into its own class
MetaConverter
- To regenerate the expected failure / skip lists, just run with
PYTORCH_COLLECT_EXPECT and filter on a specific test type
(test_meta or test_dispatch_meta) for whichever you want to update.
Other misc fixes:
- Fix max_pool1d to work with BFloat16 in all circumstances, by making
it dispatch and then fixing a minor compile error (constexpr doesn't
work with BFloat16)
- Add resolve_name for turning random torch API functions into string
names
- Add push classmethod to the Mode classes, so that you can more easily
push a mode onto the mode stack
- Add some more skips for missing LAPACK
- Added an API to let you query if there's already a registration for
a function, added a test to check that we register_meta for all
decompositions (except detach, that decomp is wrong lol), and then
update all the necessary sites to make the test pass.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477
Approved by: https://github.com/zou3519
Per title.
Before this PR `flip` throws errors on invalid inputs from ATen implementation itself, and not from error checks happening in prims/refs.
We should make sure that prims/refs do all the necessary error checking (@mruberry is going to test that by moving reference error inputs testing to call meta implementations instead of real ones).
In general, most error checking should live in refs, prims meta functions should propagate the necessary properties, but they should assume that they are getting valid inputs. The checks on the inputs should happen in refs, where they can be traced to the necessary guards, or lead to RuntimeErrors during tracing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77500
Approved by: https://github.com/mruberry
This PR makes the following changes...
Prims
- adds as_strided
- fixes errors in flatten meta
Testing
- enables view consistency checking (which can be opted out of, see issues below)
- adds reference inputs for view, reshape, and flatten
- adds error inputs for reshape
Refs
- adds as_strided, reshape, and view
- fixes an error in the flatten ref where it was not returning self on no-op
- fixes a bug in transpose where it was not retuning a view when the transposed tensor has 1 or fewer dims
Issues
- https://github.com/pytorch/pytorch/issues/77218
- https://github.com/pytorch/pytorch/issues/77216
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77220
Approved by: https://github.com/ngimel
Decompositions can be used to fill in meta support where necessary,
assuming the operations they decompose to support meta key.
This PR adds register_meta kwarg to register_decomposition that
optionally lets you register the meta to the C++ dispatch table
for meta tensors. I use this to then get the meta function for
where and huber_loss for free.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77353
Approved by: https://github.com/mruberry
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python. You now need to give a full
schema string for your prims. The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117
Approved by: https://github.com/mruberry, https://github.com/albanD
This PR ...
Makes the following testing changes:
- Updates stride testing in test_python_reference_consistency to only check strides of dimensions with length > 1
- Creates reference inputs for reshape
- Creates reference inputs for chunk
- Extends the sample inputs for unsqueeze
- Extends the sample inputs for stack -- test_conj_view and test_neg_view are now xfailed
- https://github.com/pytorch/pytorch/issues/77046
Makes the following architecture changes:
- Adds the refs.special (sub)module
- Adds the refs.nn.functional (sub)module
Adds the following prims:
- expand_dims
- view_of
- rev
- clone
Adds the following references:
- flatten
- squeeze
- unsqueeze
- special.i0e
- special.i1e
- logical_or
- logical_and
- isclose
- flip
- stack
- nn.functional.elu
- chunk
- clone
- narrow
Identifies the following bugs in PyTorch today:
- https://github.com/pytorch/pytorch/issues/77054
- https://github.com/pytorch/pytorch/issues/77055
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77043
Approved by: https://github.com/ngimel
This PR does the following...
Tests:
- fixes test_type_promotion in test_binary_ufuncs to correctly generate scalar cpu tensors
- fixes test_python_reference_consistency to use the Python Reference's reference inputs
- extends Python reference testing to test_conj_view, test_neg_view, and test_neg_conj_view
- adds a NaN propagation sample input for elementwise unary and binary operations
- fixes the UnaryUfuncInfo class to properly register its reference inputs
- Updates the Python Reference OpInfos to skip error inputs when their behavior on scalar inputs is inconsistent with their reference operators
Code organization:
- moves elementwise type promotion functionality to prims.utils
Prims & Refs:
- fixes scalar cpu tensor handling by having them pass through broadcasting and device and shape checks
- adds two decorators, `elementwise_type_promotion_wrapper` and `out_wrapper`, the former allows for elementwise type promotion to be automated and the latter automatically adds the out kwarg and handles it properly
cc @ezyang who also had some thoughts on cpu scalar tensor handling
cc @chillee -- might want to use this new decorator as we converge decompositions and references
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76945
Approved by: https://github.com/ngimel
For the most part, PrimTorch refs have the same signature as their
ATen equivalents. I modify most PrimTorch refs to register themselves
as decompositions, using the prim name they wrap to find the aten name
(except for a few cases where the prim/aten names mismatch). There are
some exclusions, falling into one of two categories:
- The torch equivalent was already implemented as a CompositeImplicitAutograd
decomposition in C++
- The ref doesn't support enough features (e.g., the real deal has more
kwargs / overloads than are currently implemented)
PrimTorch refs are written as a single function that supports all
overloads, and this style is convenient for cases where we have a bundle
of overloads for what morally is a single overload with a Union type
on an argument (which we ought to have supported in
native_functions.yaml but blah); to support registering a single decomp
for all the overloads, we modify register_decomposition to register
to ALL overloads if you pass it an overload packet. This is technically
BC breaking but no tests started failing because of it.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76835
Approved by: https://github.com/Chillee, https://github.com/mruberry
Also fixes xlogy (turns out the only thing it was missing was a type cast annotation! nice!)
I also renamed `canonicalize_idx` => `canonicalize_dim` (to align with `canonicalize_dims`) and fixed a bug in it (cc: @mruberry)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76873
Approved by: https://github.com/mruberry
This PR...
Adds the following prims:
- slice
- slice_in_dim
- transpose
Adds the following refs:
- cat
- permute
- transpose
- swap_axes (alias for transpose)
- tensor_split
Makes the following test improvements:
- adds reference inputs for torch.permute
- adds a NumPy reference for torch.permute
- adds reference inputs for torch.cat
Fixes the following bugs:
- adds support for scalars to the min and max prims
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76727
Approved by: https://github.com/ngimel
This PR makes the following changes:
Prims:
- igamma and igammac are now correctly listed as elementwise binary operations, not elementwise unary operations
- elementwise prims now must specify their type promotion kind (this is currently unused)
Refs:
- complexhalf is now handled by opmath-style type promotion
- adds references for: abs, acos, acosh, asin, atan, ceil, cos, cosh, digamma, erf, erfinv, erfc, exp, expm1, isfinite, isnan, lgamma, log, log1p, neg, reciprocal, sign, sin, sinh, sqrt, square, tan, igamma, igammac
- adds "complex to float" and "bool to long" type promotion kinds
- updates out behavior to warn when resizing a non-empty tensor, consistent with current ops
- updates the elementwise unary reference template with type promotion
Tests:
- fixes torch.pow's OpInfo to correctly specify it only supports one scalar input, not two
- fixes elementwise binary reference inputs to not attempt generating certain tensors in complex half (for now, cc @kshitij12345)
- adds OpInfos for the following Python references: abs, acos, acosh, asin, atan, ceil, cos, cosh, digamma, erf, erfinv, erfc, exp, expm1, isfinite, isnan, lgamma, log, log1p, neg, reciprocal, round, sign, sin, sinh, sqrt, square, tan, atan2, bitwise_and, bitwise_left_shift, bitwise_or, bitwise_xor, eq, float_power, ge, gt, igamma, igammac, le, lt, maximum, minimum, mul, ne, nextafter, pow, sub, true_divide
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76647
Approved by: https://github.com/ngimel
This adds prototype nvFuser integration for the following prims:
- broadcast_in_dim
- convert_element_type
- add
- div
- ge
- gt
- le
- lt
- mul
Adding it for additional prims supported by nvFuser's prototype Python frontend should be easy.
This also adds a new sugar to run operations using the ATen or nvFuser trace executors. For example:
```
def foo(a, b):
return torch.add(a, b)
traced_foo = make_traced(foo)
a = torch.randn((1, 2, 3, 4, 5), device='cuda')
b = torch.randn((1, 2, 3, 4, 5), device='cuda')
result = traced_foo(a, b, executor='nvfuser')
```
Currently only operations with tensor inputs and one tensor output are supported, and the operation must be composed exclusively of reference or prim operations.
Finally, this adds a new test, test_prims.py, that just tests the broadcast_in_dim prim for now. In the future we'll likely have OpInfos for each prim, but we'll need a reference implementation of broadcast_in_dim to make that interesting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76560
Approved by: https://github.com/ngimel
Adds a prototype tracer with no caching support and the `ElementwiseUnaryPythonRefInfo` class. A reference for `floor` is added to test the latter, and the elementwise binary reference inputs are extended to also return noncontiguous inputs. The SampleInput transform operation has been updated to return an actual SampleInput instead of a tuple to facilitate uniform handling of (transformed) SampleInputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76388
Approved by: https://github.com/ngimel
Summary:
This PR adds an initial set of experimental primitive operations and Python references that reimplement existing PyTorch operations using them. See https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-0/577 for additional context.
The following experimental primitives are added:
- Elementwise unary prims -- abs, acos, acosh, asin, atan, cos, cosh, bessel_i0e, bessel_i1e, cbrt, ceil, digamma, erf, erf_inv, erfc, exp, expm1, floor, igamma, igammac, is_finite, lgamma, log, log1p, neg, reciprocal, round, sign, sinh, sqrt, square, tan.
- Elementwise binary prims -- add, atan2, bitwise_and, bitwise_not, bitwise_or, bitwise_xor, div, eq, ge, gt, le, lt, max, min, mul, ne, nextafter, pow, rsqrt, shift_left, shift_right_arithmetic
- View prims -- brodcast_in_dim, collapse_view, split_dim, squeeze
- Shape prims -- collapse, concatenate, reshape
- Conditional prims -- select
- Data conversion & movement prims -- convert_element_type, device_put
- Inplace prims -- copy_to, resize
These primitives do not add any new functionality to PyTorch, but are intended to be the semantic building blocks for reference operators. We have tried to make them consistent with the operations in [jax.lax](https://jax.readthedocs.io/en/latest/jax.lax.html) where possible (because PyTorch prefers being consistent with other frameworks), although there are key differences between these prims and operations in jax.lax. Most notably is that these prims model view semantics and inplace operations.
In addition to these primitives the following elementwise binary Python references are added:
- Elementwise binary Python references -- add, atan2, bitwise_and, bitwise_left_shift, bitwise_or, bitwise_right_shift, bitwise_xor, eq, float_power, ge, gt, le, lt, maximum, minimum, mul, ne, nextafter, pow, sub, true_divide
- Conditional Python references - where
- Data conversion & movement references - copy_to
A Python reference implements the same behavior as its corresponding PyTorch operator (excepting slight numerical differences, bug fixes, and in some cases additional features).
The start of an OpInfo-based test architecture for these references is also included in this PR. A new list, `python_ref_db`, is added to `common_methods_invocations.py`. This list introduces the new `ElementwiseBinaryPythonRefInfo`, which inherits input arguments from the original operators' OpInfo, allows them to be overridden, and then constructs the OpInfo for the Python reference using the (potentially modified) arguments. OpInfo-based tests can opt-into testing references by including this new list in the Sequence passed to the `ops` decorator.
cc ngimel csarofeen kevinstephano Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75095
Reviewed By: ngimel
Differential Revision: D35888004
Pulled By: mruberry
fbshipit-source-id: 21e77c4456c2a02113367d4bdae168a3a2f33f25
(cherry picked from commit 1d5bcfa99d4e8cf36f60642803a0bfca50e2ea4e)