Commit Graph

67 Commits

Author SHA1 Message Date
jpvillam
6b21a33795 [ROCM] Enable custom tests on rocm
Enables custom test building and testing on ROCm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75473
Approved by: https://github.com/jeffdaily, https://github.com/janeyx99
2022-04-26 14:22:14 +00:00
Jane Xu
6259601c8a Set test owners for tests with unknown owners (#67552)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67552

Reviewed By: jbschlosser

Differential Revision: D32028248

Pulled By: janeyx99

fbshipit-source-id: a006f7026288b7126dba58b31cac28e10ce0fed6
2021-10-29 12:42:01 -07:00
Richard Barnes
e0643fa3fc use irange for loops 5 (#66744)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66744

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D31705358

fbshipit-source-id: d6ea350cbaa8f452fc78f238160e5374be637a48
2021-10-18 21:59:50 -07:00
Xue Li
2f099c7555 Revert D30652629: use irange for loops
Test Plan: revert-hammer

Differential Revision:
D30652629 (687c2267d4)

Original commit changeset: 0ae6c4bbbb55

fbshipit-source-id: 5c4f067b584a021c8c9656454d1ee60999600fb3
2021-10-15 15:23:10 -07:00
Richard Barnes
687c2267d4 use irange for loops (#66234)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66234

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

bypass_size_limit
allow-large-files

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D30652629

fbshipit-source-id: 0ae6c4bbbb554bad42e372792a6430e1acf15e3e
2021-10-15 13:50:33 -07:00
Zhengxu Chen
ac99d63f83 [jit] Make operation call accept Stack& instead Stack* (#63414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63414

Misuse of raw pointer in here where stack is never nullable.
ghstack-source-id: 136938318

Test Plan:
compiles.

Imported from OSS

Reviewed By: ejguan

Differential Revision: D30375410

fbshipit-source-id: 9d65b620bb76d90d886c800f54308520095d58ee
2021-08-30 11:49:20 -07:00
Philip Meier
57d4c6cf42 replace self.assertTrue(torch.allclose(..)) with self.assertEqual(…) (#63637)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/63565

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63637

Reviewed By: malfet

Differential Revision: D30541266

Pulled By: mruberry

fbshipit-source-id: ab461949782c6908a589ea098fcfcf5c3e081ee6
2021-08-25 16:47:40 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Ailing Zhang
27a0d6f1df AutoDispatchBelowAutograd takes no arguments. (#56424)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56424

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D27866607

Pulled By: ailzhang

fbshipit-source-id: b82cfb90af5bc7b4129266083fe31f8b335a5b41
2021-04-21 14:44:12 -07:00
Ailing Zhang
3d904b56ec s/AutoNonVariableTypeMode/AutoDispatchBelowAutograd/ (#56423)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56423

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D27866606

Pulled By: ailzhang

fbshipit-source-id: e3942356dc3133d1c5722de40ec0d45e6a60f2f1
2021-04-20 17:17:46 -07:00
Ailing Zhang
a9bcab46ff Revert back changes in test_custom_ops.cpp. (#55350)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55350

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D27600413

Pulled By: ailzhang

fbshipit-source-id: 5e0d5f13fe3a51fcdccaad8af4d46cbe82795174
2021-04-06 12:41:31 -07:00
Ailing Zhang
24c904951c Replace AutoNonVariableTypeMode with InferenceMode in fbcode. (#55114)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55114

Test Plan: CI

Reviewed By: ezyang, bhosmer

Differential Revision: D27472768

fbshipit-source-id: 76f17ef7de40f6e04e2968f8958027b5f93e1c0c
2021-04-02 11:45:53 -07:00
Rong Rong (AI Infra)
806010b75e [BE] move more unittest.main() to run_tests() (#50923)
Summary:
Relate to https://github.com/pytorch/pytorch/issues/50483.

Everything except ONNX, detectron and release notes tests are moved to use common_utils.run_tests() to ensure CI reports XML correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50923

Reviewed By: samestep

Differential Revision: D26027621

Pulled By: walterddr

fbshipit-source-id: b04c03f10d1fe96181b720c4c3868e86e4c6281a
2021-01-25 07:23:09 -08:00
Brian Hirsh
4fcdbb824b Updating all call-sites of the legacy dispatcher registration API in fbcode to the new API. (#48178)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48178

I migrated all call sites that used the legacy dispatcher registration API (RegisterOperators()) to use the new API (TORCH_LIBRARY...). I found all call-sites by running `fbgs RegisterOperators()`. This includes several places, including other OSS code (nestedtensor, torchtext, torchvision). A few things to call out:

For simple ops that only had one registered kernel without a dispatch key, I replaced them with:
```
TORCH_LIBRARY_FRAGMENT(ns, m) {
   m.def("opName", fn_name);
}
```

For ops that registered to a specific dispatch key / had multiple kernels registered, I registered the common kernel (math/cpu) directly inside a `TORCH_LIBRARY_FRAGMENT` block, and registered any additional kernels from other files (e.g. cuda) in a separate `TORCH_LIBRARY_IMPL` block.

```
// cpu file
TORCH_LIBRARY_FRAGMENT(ns, m) {
  m.def("opName(schema_inputs) -> schema_outputs");
  m.impl("opName", torch::dispatch(c10::DispatchKey::CPU, TORCH_FN(cpu_kernel)));
}

// cuda file
TORCH_LIBRARY_IMPL(ns, CUDA, m) {
  m.impl("opName", torch::dispatch(c10::DispatchKey::CUDA, TORCH_FN(cuda_kernel)));
}
```
Special cases:

I found a few ops that used a (legacy) `CPUTensorId`/`CUDATensorId` dispatch key. Updated those to use CPU/CUDA- this seems safe because the keys are aliased to one another in `DispatchKey.h`

There were a handful of ops that registered a functor (function class) to the legacy API. As far as I could tell we don't allow this case in the new API, mainly because you can accomplish the same thing more cleanly with lambdas. Rather than delete the class I wrote a wrapper function on top of the class, which I passed to the new API.

There were a handful of ops that were registered only to a CUDA dispatch key. I put them inside a TORCH_LIBRARY_FRAGMENT block, and used a `def()` and `impl()` call like in case two above.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D25056090

Pulled By: bdhirsh

fbshipit-source-id: 8f868b45f545e5da2f21924046e786850eba70d9
2020-12-02 11:19:31 -08:00
Brian Hirsh
7b2c78f120 Revert D24714803: make duplicate def() calls an error in the dispatcher. Updating all fb operators to use the new dispatcher registration API
Test Plan: revert-hammer

Differential Revision:
D24714803 (824f710694)

Original commit changeset: c809aad8a698

fbshipit-source-id: fb2ada65f9fc00d965708d202bd9d050f13ef467
2020-11-16 20:14:26 -08:00
Brian Hirsh
824f710694 make duplicate def() calls an error in the dispatcher. Updating all fb operators to use the new dispatcher registration API (#47322)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47322

Updating all call-sites of the legacy dispatcher registration API in fbcode to the new API.

I migrated all call sites that used the legacy dispatcher registration API (RegisterOperators()) to use the new API (TORCH_LIBRARY...). I found all call-sites by running `fbgs RegisterOperators()`. This includes several places, including other OSS code (nestedtensor, torchtext, torchvision). A few things to call out:

For simple ops that only had one registered kernel without a dispatch key, I replaced them with:
```
TORCH_LIBRARY_FRAGMENT(ns, m) {
   m.def("opName", fn_name);
}
```

For ops that registered to a specific dispatch key / had multiple kernels registered, I registered the common kernel (math/cpu) directly inside a `TORCH_LIBRARY_FRAGMENT` block, and registered any additional kernels from other files (e.g. cuda) in a separate `TORCH_LIBRARY_IMPL` block.

```
// cpu file
TORCH_LIBRARY_FRAGMENT(ns, m) {
  m.def("opName(schema_inputs) -> schema_outputs");
  m.impl("opName", torch::dispatch(c10::DispatchKey::CPU, TORCH_FN(cpu_kernel)));
}

// cuda file
TORCH_LIBRARY_IMPL(ns, CUDA, m) {
  m.impl("opName", torch::dispatch(c10::DispatchKey::CUDA, TORCH_FN(cuda_kernel)));
}
```
Special cases:

I found a few ops that used a (legacy) `CPUTensorId`/`CUDATensorId` dispatch key. Updated those to use CPU/CUDA- this seems safe because the keys are aliased to one another in `DispatchKey.h`

There were a handful of ops that registered a functor (function class) to the legacy API. As far as I could tell we don't allow this case in the new API, mainly because you can accomplish the same thing more cleanly with lambdas. Rather than delete the class I wrote a wrapper function on top of the class, which I passed to the new API.

There were a handful of ops that were registered only to a CUDA dispatch key. I put them inside a TORCH_LIBRARY_FRAGMENT block, and used a `def()` and `impl()` call like in case two above.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D24714803

Pulled By: bdhirsh

fbshipit-source-id: c809aad8a698db3fd0d832f117f833e997b159e1
2020-11-16 15:33:08 -08:00
albanD
45c5bac870 [WIP] Fix cpp grad accessor API (#40887)
Summary:
Update the API to access grad in cpp to avoid unexpected thread safety issues.
In particular, with the current API, a check like `t.grad().defined()` is not thread safe.

- This introduces `t.mutable_grad()` that should be used when getting a mutable version of the saved gradient. This function is **not** thread safe.
- The `Tensor& grad()` API is now removed. We could not do a deprecation cycle as most of our call side use non-const Tensors that use the non-const overload. This would lead to most calls hitting the warning. This would be too verbose for all the users.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40887

Reviewed By: ezyang

Differential Revision: D22343932

Pulled By: albanD

fbshipit-source-id: d5eb909bb743bc20caaf2098196e18ca4110c5d2
2020-07-16 09:11:12 -07:00
Sebastian Messmer
53af9df557 Unify boxed function signature between jit and c10 (#37034)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37034

c10 takes a Stack* in boxed functions while JIT took Stack&.
c10 doesn't return anything while JIT returns an int which is always zero.

This changes JIT to follow the c10 behavior.
ghstack-source-id: 106834069

Test Plan: unit tests

Differential Revision: D20567950

fbshipit-source-id: 1a7aea291023afc52ae706957e9a5ca576fbb53b
2020-06-29 19:24:26 -07:00
Pritam Damania
cdc56d0b6c Support c10::optional<Tensor> in custom C++ autograd function. (#37700)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37700

Certain autograd functions can have optional Tensor arguments. For
this purpose it would be nice to support c10::optional<Tensor> as an argument
for C++ autograd functions.

I've added the appropriate overload to ExtractVariables to ensure this works.
For an example, you can look at D21272807 in terms of how this is used.
ghstack-source-id: 103541789

Test Plan: waitforbuildbot

Differential Revision: D21363491

fbshipit-source-id: 0c8665e9bfe279e6b9ab84a889524fea11fa971c
2020-05-06 01:59:51 -07:00
Nikita Shulga
47c4dca1ab Remove python-2 or python<3.5 checks from unit tests (#37252)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37252

Test Plan: CI

Differential Revision: D21241083

Pulled By: malfet

fbshipit-source-id: 44164b822f7905288abb2beda0175d2162d86143
2020-04-24 17:42:04 -07:00
James Reed
618c6214aa [reapply][JIT] Namespaces for TorchBind (#35254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35254

Reapply D20541090 with some BC fixes
ghstack-source-id: 100733987

Test Plan: buck test mode/dev-nosan //caffe2/torch/fb/predictor/model_repo/tests:ai_infra_representative_model_shard_6_test -- 'RepresentativeModelTest\/ShardedRepresentativeModelTest\.RunModel\/0'

Reviewed By: zdevito

Differential Revision: D20607111

fbshipit-source-id: 80f148d860571208c93e9308128cd480ff089f74
2020-03-24 00:39:48 -07:00
Lu Fang
a100cf5146 Revert D20541090: [JIT][torchbind] Namespaces for torchbind classes
Test Plan: revert-hammer

Differential Revision:
D20541090

Original commit changeset: ce3d9391dd3c

fbshipit-source-id: acc1d660fbda611941381315507dfe594c385db1
2020-03-21 12:20:44 -07:00
James Reed
e0496a70fc [JIT][torchbind] Namespaces for torchbind classes (#35054)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35054

Test Plan: Imported from OSS

Differential Revision: D20541090

Pulled By: jamesr66a

fbshipit-source-id: ce3d9391dd3cdf619042b8f6ba2645f4c1fc875c
2020-03-20 20:07:02 -07:00
Michael Suo
c235be42dd [jit] kill script namespace (#34515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515

Once upon a time we thought this was necessary. In reality it is not, so
removing it.

For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.

There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.

Test Plan: Imported from OSS

Differential Revision: D20353503

Pulled By: suo

fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
2020-03-11 23:32:48 -07:00
James Reed
7d630278da Separate torchbind from Python (#30242)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30242

Pull Request resolved: https://github.com/pytorch/pytorch/pull/29501

Currently blocked on schema serialization issue

Test Plan: Imported from OSS

Differential Revision: D18463063

Pulled By: jamesr66a

fbshipit-source-id: c12a1b644eb9bf04e68ff93cccf91d6cb3e75359
2019-12-21 22:52:40 -08:00
Sebastian Messmer
e169e02836 Refactor custom op tests (#31282)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31282

Introduce a helper to easily call stack ops
ghstack-source-id: 95855728

Test Plan: unit tests

Differential Revision: D19061515

fbshipit-source-id: a7d6329e26cd3d94730d88c8a6393e10bfbd8e9b
2019-12-17 20:48:01 -08:00
Sebastian Messmer
0d7391f8b2 Test cases for custom ops with autograd (#31003)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31003

-
ghstack-source-id: 95663728

Test Plan: unit tests

Differential Revision: D18896189

fbshipit-source-id: d71f7678fff644536fe30452ee21a5a7df1f1f0b
2019-12-15 22:37:24 -08:00
Sebastian Messmer
bc2e6d10fa Back out "Revert D17908478: Switch PyTorch/Caffe2 to C++14"
Summary: Original commit changeset: 775d2e29be0b

Test Plan: CI

Reviewed By: mruberry

Differential Revision: D18775520

fbshipit-source-id: a350b3f86b66d97241f208786ee67e9a51172eac
2019-12-03 14:33:43 -08:00
Sebastian Messmer
a2ed50c920 Revert D17908478: Switch PyTorch/Caffe2 to C++14
Test Plan: revert-hammer

Differential Revision:
D17908478

Original commit changeset: 6e340024591e

fbshipit-source-id: 775d2e29be0bc3a0db64f164c8960c44d4877d5d
2019-11-27 14:57:05 -08:00
Sebastian Messmer
d0acc9c085 Switch PyTorch/Caffe2 to C++14 (#30406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30406

ghstack-source-id: 94642238

Test Plan: waitforsandcastle

Differential Revision: D17908478

fbshipit-source-id: 6e340024591ec2c69521668022999df4a33b4ddb
2019-11-27 10:47:31 -08:00
Zachary DeVito
796363147f Implement more of of the nn.Module API (#28828)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28828

This updates torch::script::Module to more closely match the behavior
of nn.Module. In particular, it implements the (optionally recurisive)
iterators that retrieve submodules, parameters, and buffers and makes
their names match the python versions.

This also removes the individual accessors for Parameter, Module, Buffer, etc.
and replaces them with a single `attr` function which is equivalent to
writing `a.foo` in Python (`setattr` emulates `a.foo = v`).
As we build out the user-facing API for TorchScript values this will end
up matching how an  attribute is accessed on general objects.

This PR preservers the python bindings for script::Module by emulating the
old API at the binding level. A followup will clean up the usage to more
directly match the C++ API.

Test Plan: Imported from OSS

Differential Revision: D18197611

Pulled By: zdevito

fbshipit-source-id: 7ee4dcbb258605d1c988314b05d938423f1ccee5
2019-11-06 22:58:25 -08:00
Sebastian Messmer
243298668c Remove confusing torch::jit::RegisterOperators for custom ops (#28229)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28229

We have `torch::RegisterOperators` for custom ops. `torch::jit::RegisterOperators` had a dual state of being able to register custom ops if called one way and being able to register pure JIT ops if called another way.
This is confusing because you end up in different operator libraries depending on which API exactly you're using.

This PR removes the ability for torch::jit::RegisterOperators to register custom ops and forces people to use the new torch::RegisterOperators.

This was already deprecated before but we now remove it.
ghstack-source-id: 92137305

Test Plan: unit tests

Differential Revision: D17981895

fbshipit-source-id: 0af267dfdc3c6a2736740091cf841bac40deff40
2019-10-18 10:46:31 -07:00
Mikhail Zolotukhin
2265cddbd2 Cleanup torch::jit::script::Module API for accessing attributes/parameters/submodules. (#27260)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27260

This PR has the following changes:
- Slot class is removed. In all use cases except `lower_graph` we really
just needed the attribute name and thus having an extra layer of
abstraction through Slot only made the code harder to understand.
- get_parameters, get_attributes, get_modules, and get_slots now return
a list of <name, item> pairs instead of a list of Slots.

Differential Revision: D17728910

Test Plan: Imported from OSS

Pulled By: ZolotukhinM

fbshipit-source-id: 94781611752dd88e7fddfe8b8e0252d6ec32ba68
2019-10-16 21:32:08 -07:00
Edward Yang
33db4e02cb Separate libtorch tests from libtorch build. (#26927)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26927

When we build a "normal" copy of PyTorch, we internally build a copy
of libtorch.  If we want to test libtorch: we have a choice:
test against the regular PyTorch build, or test against the libtorch
only build.  All of our libtorch tests require Python-side PyTorch
to run.  So it makes more sense to test the regular PyTorch build.

There is probably still utility in making sure that it is still
possible to build libtorch only, but in that case we should endeavour
to run tests that ONLY require libtorch build, and not Python side
stuff.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17695384

Pulled By: ezyang

fbshipit-source-id: 02522a8be0f5944f2b6255a8f1281e53ce2dcc6f
2019-10-02 08:04:52 -07:00
Horace He
f81db8afb8 Initial torchbind prototype (#21098)
Summary:
I have some test code in there as well, along with a script "test_libtorch" to run it. You'll need to modify `test_libtorch` to point to where you have `pytorch` built. I currently require that `pybind11` is included as a subdirectory of the test, but added it to the `.gitignore` to make this reviewable.

Currently, something like this works:
```cpp
struct Foo {
  int x, y;
  Foo(): x(2), y(5){}
  Foo(int x_, int y_) : x(x_), y(y_) {}
  void display() {
    cout<<"x: "<<x<<' '<<"y: "<<y<<endl;
  }
  int64_t add(int64_t z) {
    return (x+y)*z;
  }
};
static auto test = torch::jit::class_<Foo>("Foo")
                    .def(torch::jit::init<int64_t, int64_t>())
                    .def("display", &Foo::display)
                    .def("add", &Foo::add)
                    .def("combine", &Foo::combine);

```
with
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val.display()
    print(val.add(3))
```
results in
```
x: 5 y: 3
24
```

Current issues:
- [x] The python class created by torchscript doesn't interactly properly with the surrounding code.
```
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    return val
```
- [x] Doesn't properly take in non-pointer classes. Can't define this function signature in cpp (We don't want to support this I believe).
```cpp
  void combine(Foo x) {
```

- [x] Has some issues with memory for blobs when constructing multiple objects (fix constant propagation pass to not treat capsules as the same object).
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val2 = torch._C.Foo(100, 0)
    val.display()
    print(val.add(3))
```
- [ ] Can't define multiple constructors (need to define overload string. Currently not possible since we don't support overloaded methods).
- [x] `init` is a little bit different syntax than `pybind`. `.init<...>()` instead of `.def(py::init<>())`
- [x] I couldn't figure out how to add some files into the build so they'd be copied to the `include/` directories, so I symlinked them manually.
- [ ] Currently, the conversion from Python into Torchscript doesn't work.
- [ ] Torchbind also currently requires Python/Pybind dependency. Fixing this would probably involve some kind of macro to bind into Python when possible.
- [ ] We pass back into Python by value, currently. There's no way of passing by reference.
- [x] Currently can only register one method with the same type signature. This is because we create a `static auto opRegistry`, and the function is templated on the type signature.

Somewhat blocked on https://github.com/pytorch/pytorch/pull/21177. We currently use some structures that will be refactored by his PR (namely `return_type_to_ivalue` and `ivalue_to_arg_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21098

Differential Revision: D16634872

Pulled By: Chillee

fbshipit-source-id: 1408bb89ea649c27d560df59e2cf9920467fe1de
2019-08-02 18:45:15 -07:00
Zachary DeVito
5b87049c66 remove uses of std::shared_ptr<Module> (#21934)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21934
ghimport-source-id: e64ab9096f43749ead3ac5567675b815da295664

Test Plan: Imported from OSS

Differential Revision: D15892401

Pulled By: zdevito

fbshipit-source-id: 6424139206593ff944556c69d8a54723884eacaf
2019-06-25 13:24:38 -07:00
Zachary DeVito
972ec676b2 Remove lowered execution (#21674)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21674
ghimport-source-id: b8e27f0ce9b8b362daf73556ee67457fb5355062

Reviewed By: eellison

Differential Revision: D15777726

Pulled By: zdevito

fbshipit-source-id: 718ac676c9a1bcf99b856862fd29631d825645da
2019-06-16 14:29:18 -07:00
Mikhail Zolotukhin
fbecb4621f schema_matching.cpp: improve error messages.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21141

Differential Revision: D15808354

Pulled By: ZolotukhinM

fbshipit-source-id: 16d938fd5acafb445a0c433cabc9a55cab563165
2019-06-13 17:04:38 -07:00
Michael Suo
b6d1a72f48 improve error message on inferred type (#21058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21058
ghimport-source-id: 7fad3a0567022dd417f4bd079a50a22e3c1dc020

Differential Revision: D15547218

Pulled By: suo

fbshipit-source-id: 5dbd567c79e6d01e9af4b8552777f7f0043df5b2
2019-05-30 10:50:34 -07:00
Zachary DeVito
13f03a42d2 Create Object that represents a Module (#18469)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18469
ghimport-source-id: 73cb8b58f43f10b1dcfca805fd5b25c4fa977632

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18469 Create Object that represents a Module**
* #18468 slots with explicit value/setValue make more sense in future patches
* #18467 Make Object hold its ClassType
* #18379 Enforce single parent for script submodules
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

This changes the underlying storage for script::Module to hold
a ivalue::Object which has slots for all the parameters and attributes.

NamedIValue and Slot are now merged together into one class Slot that stores
the tuple (ivalue::Object, offset) and can be used to read the name, type,
or value of the slot and also to set the value. This cleans up a bunch
of client uses.

This PR does not actually use the module object in any generated code.
A future PR will switch how code is generated to treat modules as
first class.

Differential Revision: D14613508

fbshipit-source-id: d853a7559f58d244de2ef54a781427fcd1060ed0
2019-04-05 18:58:52 -07:00
Zachary DeVito
f6f34b3f4c slots with explicit value/setValue make more sense in future patches (#18468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18468
ghimport-source-id: d4b41c521f2269a695e03c8e7d05d5542731ee48

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18469 Create Object that represents a Module
* **#18468 slots with explicit value/setValue make more sense in future patches**
* #18467 Make Object hold its ClassType
* #18379 Enforce single parent for script submodules
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

Reviewed By: suo

Differential Revision: D14613509

fbshipit-source-id: 9f2208d0efd01465c78cebdc3e8365a9e0adf9ff
2019-04-05 13:41:02 -07:00
Zachary DeVito
53458c97dd Enforce single parent for script submodules (#18379) (#18860)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18860
ghimport-source-id: 96305349bf3db564f43df2263b1e5bddcc9e9dae

Reviewed By: suo

Differential Revision: D14780421

Pulled By: zdevito

fbshipit-source-id: 2bdd89b35866ba035ebea0adab037e441c1006e2
2019-04-05 13:40:56 -07:00
Zachary DeVito
f97eb8d9e4 Revert D14603722: Enforce single parent for script submodules
Differential Revision:
D14603722

Original commit changeset: 63ab5d0cccf7

fbshipit-source-id: 2c4174def102eda4589e08c4dbd67ce8af975199
2019-04-04 10:32:36 -07:00
Zachary DeVito
7e59c60454 Enforce single parent for script submodules (#18379)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18379
ghimport-source-id: 9895ecc1ff7897e98853dc00675341f36726e7c7

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18379 Enforce single parent for script submodules**
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

The assumption that a ScriptModule has a single parent is present in
our serialization format, and likely a few other places. It is not
enforced on creation of script module hierarchies though, meaning that
problems associated with (e.g. replicating a module twice in the output
format) will not be caught until much later in the development cycle.

This patch enforces the property when a submodule is registered.
It also removes NamedModule since it is no longer necessary in this regime.
This will also allow the easy discover of a modules fully-qualified name
without needing to traverse the Module hierarchy.

Differential Revision: D14603722

fbshipit-source-id: 63ab5d0cccf7d66c7833e0adf9023024ca9607cb
2019-04-03 20:26:58 -07:00
Zachary DeVito
0512e4e323 Unify namespace of script::Module (#18378)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18378
ghimport-source-id: 55c29bb436a2153d29ff2f4488d99d8863c187b1

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18379 Enforce single parent for script submodules
* **#18378 Unify namespace of script::Module**
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

This removes individual OrderedDicts in favor of a single unified
namespace for all things in a script::Module. This removes a whole
class of bugs where both a method and an parameter could get the
same name, for instance.

Since we no longer have to expose OrderedDict::Item objects, a lot of
downstream code can be simplified.

We no longer now double-store names (both in the key of the dictionary,
and in the object itself).

Differential Revision: D14603723

fbshipit-source-id: b5f7551b3074679623edd6ea70269830353b4d4c
2019-04-03 16:04:17 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
David Riazati
a2381fa346 Add module attributes (#17309)
Summary:
Similar to `nn.Parameter`s, this PR lets you store any `IValue` on a module as an attribute on a `ScriptModule` (only from the Python front-end currently). To mark something as an attribute, it should wrapped in `jit.Attribute(value, type)` (ex. `self.table = torch.jit.Attribute(table, Dict[str, torch.Tensor])`)

Followup Work:
* (de)serializing for use in C++
* change `self.training` to be a `bool` attribute instead of a buffer
* mutable attributes
* string frontend support
* documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17309

Differential Revision: D14354316

Pulled By: driazati

fbshipit-source-id: 67e08ab5229366b67fbc837e67b58831a4fb3318
2019-03-07 10:44:10 -08:00
Edward Yang
eb71df3e63 Delete at::current_device(), Context::current_device() and Context::getNumGPUs() (#14414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14414

The previous functions were CUDA-centric, and lead to lots of places
where we improperly assumed that CUDA is the only game in town (it's not).
Best to delete them.

What are your alternatives?  This diff fix some use sites which may give
you some ideas.  In particular, the "given a device type, give me the
current device for that device type" might be a good function to enshrine
for real.

Reviewed By: gchanan

Differential Revision: D13218540

fbshipit-source-id: 2f42cd6b9bdab4930d25166b8041c9466a1c6e0a
2018-12-03 10:54:52 -08:00
Zachary DeVito
4c11dee0e8 Use Type::str() in Type::operator<< (#14657)
Summary:
Stacked on zip commit because it also changes expect files, read only the last commit.

This reduces the number of ways we can print a Type from 3 (python_str, str, operator<<) to 2.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14657

Differential Revision: D13288912

Pulled By: zdevito

fbshipit-source-id: f8dd610cea798c511c1d4327395bba54b1aa1697
2018-12-01 00:53:27 -08:00