These were left out of the intial migration for some reason so this just
transfers over those tests
Signed-off-by: Eli Uriegas <eliuriegasfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71644
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64929
Auto categorized 63% of the commits for PyTorch 1.10 release (2.2k out of 3.4k commits)
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D33768760
Pulled By: anjali411
fbshipit-source-id: 0655090af83e923f8c26fa1ce9f190edc542b97e
(cherry picked from commit 2fe30f77b8)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69332
---
## Context
The `build_android.sh` script currently does not forward Vulkan configuration options, which makes it impossible to control them when running `build_pytorch_android.sh`.
## Changes
Slightly change the script to allow Vulkan configuration options to propagate from `build_pytorch_android.sh` to `build_android.sh`
Test Plan: Imported from OSS
Reviewed By: beback4u
Differential Revision: D32840908
Pulled By: SS-JIA
fbshipit-source-id: e55d89c93c996b92b743cf047f5a285bb516bbc4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67805
Also fix Reduce ops on binary_cross_entropy_with_logits
The graph says the output is a scalar but with `keepdims=1`
(the default), the output should be a tensor of rank 1. We set keep
`keepdims=0` to make it clear that we want a scalar output.
This previously went unnoticed because ONNX Runtime does not strictly
enforce shape inference mismatches if the model is not using the latest
opset version.
Test Plan: Imported from OSS
Reviewed By: msaroufim
Differential Revision: D32181304
Pulled By: malfet
fbshipit-source-id: 1462d8a313daae782013097ebf6341a4d1632e2c
Co-authored-by: Bowen Bao <bowbao@microsoft.com>
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66513
These were missed in the migration of onnx to github actions.
Adds ort tests with 2 shards for the onnx workflow
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D31599433
Pulled By: seemethere
fbshipit-source-id: 73dce0d3017c4280e64f0c8578e2be7ef6a168d6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66513
These were missed in the migration of onnx to github actions.
Adds ort tests with 2 shards for the onnx workflow
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D31591512
Pulled By: seemethere
fbshipit-source-id: 4a8bb3f0e62ff98ee77d3d8afc905f4e02db6f24
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62419
This diff adds support for cpu only kineto profiler on mobile. Thus
enabling chrome trace generation on mobile. This bring cpp API for
mobile profiling on part with Torchscript.
This is done via:
1. Utilizating debug handle annotations in KinetoEvent.
2. Adding post processing capability, via callbacks, to
KinetoThreadLocalState
3. Creating new RAII stype profiler, KinetoEdgeCPUProfiler, which can be
used in surrounding scope of model execution. This will write chrome
trace to the location specified in profiler constructor.
Test Plan:
MobileProfiler.ModuleHierarchy
Imported from OSS
Reviewed By: raziel
Differential Revision: D29993660
fbshipit-source-id: 0b44f52f9e9c5f5aff81ebbd9273c254c3c03299
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62855
Test Plan: Test on Private Pod with the [HelloWorld](https://fburl.com/3hiwkkhm) demo
Reviewed By: xta0
Differential Revision: D30174151
Pulled By: hanton
fbshipit-source-id: 22cd8663ac239811bf8ed1c3b6301460d798dbfa
Summary:
Two changes:
1. Build lite interpreter as default for iOS
2. Switch the previous lite interpreter test to full jit build test
Test Plan: Imported from OSS
Differential Revision: D27698039
Reviewed By: xta0
Pulled By: cccclai
fbshipit-source-id: 022b554f4997ae577681f2b79a9ebe9236ca4f7d
Summary:
Build lite interpreter as default for android, should wait until https://github.com/pytorch/pytorch/pull/56002 lands
Mainly two changes:
1. Use lite interpreter as default for Android
2. Switch the lite interpreter build test to full jit build test
Test Plan: Imported from OSS
Differential Revision: D27695530
Reviewed By: IvanKobzarev
Pulled By: cccclai
fbshipit-source-id: e1b2c70fee6590accc22c7404b9dd52c7d7c36e2
Summary:
Some machines don't have a versionless `python` on their PATH, which breaks these existing shebangs.
I'm assuming that all the existing versionless `python` shebangs are meant to be `python3` and not `python2`; please let me know if my assumption was incorrect for any of these.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58275
Test Plan: CI.
Reviewed By: zhouzhuojie
Differential Revision: D28428143
Pulled By: samestep
fbshipit-source-id: 6562be3d12924db72a92a0207b060ef740f61ebf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57597
* Special post process for onnx::Cast and onnx::ConstantOfShape
* Update `test_pytorch_onnx_shape_inference.py` to be unit test over shape inference patterns.
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D28393529
Pulled By: SplitInfinity
fbshipit-source-id: fc26032ddb842d4e299447da39564b28049752ed
Co-authored-by: BowenBao <bowbao@microsoft.com>
Summary:
Expanding support to all builds
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56323
Test Plan: CI
Reviewed By: malfet
Differential Revision: D28171478
Pulled By: ilia-cher
fbshipit-source-id: 16bc752d1be3cbaeda5316f5d8a687ae05a83d22
Summary:
[distutils](https://docs.python.org/3/library/distutils.html) is on its way out and will be deprecated-on-import for Python 3.10+ and removed in Python 3.12 (see [PEP 632](https://www.python.org/dev/peps/pep-0632/)). There's no reason for us to keep it around since all the functionality we want from it can be found in `setuptools` / `sysconfig`. `setuptools` includes a copy of most of `distutils` (which is fine to use according to the PEP), that it uses under the hood, so this PR also uses that in some places.
Fixes#56527
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57040
Pulled By: driazati
Reviewed By: nikithamalgifb
Differential Revision: D28051356
fbshipit-source-id: 1ca312219032540e755593e50da0c9e23c62d720
Summary:
This PR is step 2 (after https://github.com/pytorch/pytorch/issues/56708) to having JIT coverage--it actually uses the plug-in in CI!
Disclaimer: note that this will mark the entire JIT'd function/method as covered without seeking proof that the
compiled code has been executed. This means that even if the code chunk is merely compiled and not run, it will get
marked as covered.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56310
Test Plan:
We should see coverage improvements in CI after. A file to look out for would be `torch/jit/quantized.py`, which should have more coverage after this PR, which it does!
d3283ccd8c/torch/jit/quantized.py vs https://codecov.io/gh/pytorch/pytorch/src/master/torch/jit/quantized.py
More generally, the whole jit folder got ~3% increase in coverage, I believe.
Reviewed By: walterddr
Differential Revision: D28000672
Pulled By: janeyx99
fbshipit-source-id: 6712979d63a5e1224a92ee9bd9679ec62cf1cbba
Summary:
This PR is step 2 (after https://github.com/pytorch/pytorch/issues/56708) to having JIT coverage--it actually uses the plug-in in CI!
Disclaimer: note that this will mark the entire JIT'd function/method as covered without seeking proof that the
compiled code has been executed. This means that even if the code chunk is merely compiled and not run, it will get
marked as covered.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56310
Test Plan:
We should see coverage improvements in CI after. A file to look out for would be `torch/jit/quantized.py`, which should have more coverage after this PR, which it does!
d3283ccd8c/torch/jit/quantized.py vs https://codecov.io/gh/pytorch/pytorch/src/master/torch/jit/quantized.py
More generally, the whole jit folder got ~3% increase in coverage, I believe.
Reviewed By: ezyang
Differential Revision: D27967517
Pulled By: janeyx99
fbshipit-source-id: 53fd8431d772c2447191135c29d1b166ecd42f50
Summary:
This adds:
- new categories
- global commit counter
- support for new "Reverted" label on PRs
- new export system to multiple files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54594
Reviewed By: H-Huang
Differential Revision: D27396011
Pulled By: albanD
fbshipit-source-id: ca1ec3a1b90221ba26fd8b053dfb10f614f05909
Summary:
*Context:* https://github.com/pytorch/pytorch/issues/53406 added a lint for trailing whitespace at the ends of lines. However, in order to pass FB-internal lints, that PR also had to normalize the trailing newlines in four of the files it touched. This PR adds an OSS lint to normalize trailing newlines.
The changes to the following files (made in 54847d0adb9be71be4979cead3d9d4c02160e4cd) are the only manually-written parts of this PR:
- `.github/workflows/lint.yml`
- `mypy-strict.ini`
- `tools/README.md`
- `tools/test/test_trailing_newlines.py`
- `tools/trailing_newlines.py`
I would have liked to make this just a shell one-liner like the other three similar lints, but nothing I could find quite fit the bill. Specifically, all the answers I tried from the following Stack Overflow questions were far too slow (at least a minute and a half to run on this entire repository):
- [How to detect file ends in newline?](https://stackoverflow.com/q/38746)
- [How do I find files that do not end with a newline/linefeed?](https://stackoverflow.com/q/4631068)
- [How to list all files in the Git index without newline at end of file](https://stackoverflow.com/q/27624800)
- [Linux - check if there is an empty line at the end of a file [duplicate]](https://stackoverflow.com/q/34943632)
- [git ensure newline at end of each file](https://stackoverflow.com/q/57770972)
To avoid giving false positives during the few days after this PR is merged, we should probably only merge it after https://github.com/pytorch/pytorch/issues/54967.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54737
Test Plan:
Running the shell script from the "Ensure correct trailing newlines" step in the `quick-checks` job of `.github/workflows/lint.yml` should print no output and exit in a fraction of a second with a status of 0. That was not the case prior to this PR, as shown by this failing GHA workflow run on an earlier draft of this PR:
- https://github.com/pytorch/pytorch/runs/2197446987?check_suite_focus=true
In contrast, this run (after correcting the trailing newlines in this PR) succeeded:
- https://github.com/pytorch/pytorch/pull/54737/checks?check_run_id=2197553241
To unit-test `tools/trailing_newlines.py` itself (this is run as part of our "Test tools" GitHub Actions workflow):
```
python tools/test/test_trailing_newlines.py
```
Reviewed By: malfet
Differential Revision: D27409736
Pulled By: samestep
fbshipit-source-id: 46f565227046b39f68349bbd5633105b2d2e9b19
Summary:
Promotion to PyPI should be more flexible to allow any package to be
promoted to PyPI.
After we re-added a version suffix to cuda 10.2 it means that this
script needs to have the flexibility to designate which platform and
which version suffix will actually be uploaded to PyPI
Should coincide with https://github.com/pytorch/builder/pull/678
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53774
Reviewed By: jbschlosser
Differential Revision: D27052347
Pulled By: seemethere
fbshipit-source-id: 71129cc5afbd7de448c970ef721bc979c3420586
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53306
* [ONNX] Fix for sequence of mutations in blocks (#51577)
Fixes consecutive mutations in a tensor inside blocks.
Also, support append and pop in blocks.
* Support inplace operations + indexing
* Clean up old pass for remove mutations
* Add loop test
* Fixes for set attr in loops
* Removing the new jit API flag
* [ONNX] Redesign onnx pass to enable shape type dependent pattern conversion - cont (#51795)
With the introduction of ONNX shape inference, shape and type are inferred on the fly as operators get converted from ATen to ONNX when running symbolic function. This resolves the shape/type requirement for the symbolic functions. The pre-onnx passes however, can not be supported by shape inference, since at that stage the operators in the graph are still ATen operators.
This PR is to update the design of ONNX pass, to enable a mechanism of capturing subgraphs of ATen operators of certain patterns, and convert them later, when shape/type information of upstream operators are available.
The new design will require pre-onnx passes that need shape/type to be written in two parts, encapsulation and conversion.
The encapsulation part will find the nodes of patterns, like how pre-onnx passes were written previously. But instead of converting the nodes, it will encapsulate them into a sub-block of a new placeholder node. This part is called before onnx pass, so it runs before calling symbolic functions.
The conversion part will be called inside the onnx pass. In onnx pass, run_symbolic_func will be called for each node in topological order. When it reaches the placeholder node, the conversion part will be invoked. It will convert the nodes inside the sub-block based on pattern. By that time, it will have shape/type of upstream operators available. After the conversion is complete, the placeholder node will be removed, and nodes inside its sub-block converted. Run_symbolic_func will be called for these nodes, and they will be converted from ATen operator to ONNX operator.
This PR includes several other fixes, listed below.
* ~~replace helper.cpp with onnx_utils.cpp for holding utility functions.~~
* fix EraseNumberTypes on Bool type, the code was outdated that back then Bool type doesn't exist.
* ~~enable onnx shape inference in export with parameter/initializer data.~~
* other code clean ups.
* fix insertion of identity nodes for loop opset 13 sequence output.
~~PR depends on #51603~~
* Fix after merge
* clang
* Fix clang
* Fix clang
* Fix warning message.
* Fixes for non-model param attributes
* Fix for caffe2
* Additional test
* clang
* Skip test for lower opsets
* fix clang-tidy
* Update init.cpp
* Update remove_inplace_ops_for_onnx.cpp
* Update remove_inplace_ops_for_onnx.cpp
* Update remove_inplace_ops_for_onnx.cpp
* Fix for clang formatting
Test Plan: Imported from OSS
Reviewed By: pbelevich, malfet
Differential Revision: D26922416
Pulled By: SplitInfinity
fbshipit-source-id: e7108620b39b6404c594910786c4d275fee59d84
Co-authored-by: Bowen Bao <bowbao@microsoft.com>
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857
These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
- `GLOSSARY.md`
- `aten/src/ATen/core/op_registration/README.md`
- `scripts/README.md`
- `torch/csrc/jit/codegen/fuser/README.md`
The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```
I looked over the auto-generated changes and didn't see anything that looked problematic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406
Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377
This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348
Reviewed By: walterddr, seemethere
Differential Revision: D26856620
Pulled By: samestep
fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
Summary:
Adds a script so that we can take wheels directly from
download.pytorch.org and publish them to pypi
This is currently mainly used to prep windows binaries for publication to PyPI
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53056
Reviewed By: H-Huang
Differential Revision: D26738642
Pulled By: seemethere
fbshipit-source-id: 96777ed6c3f3454bddb4bc13121f727074312816
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51419
## Summary
1. Add an option `BUILD_LITE_INTERPRETER` in `caffe2/CMakeLists.txt` and set `OFF` as default.
2. Update 'build_android.sh' with an argument to swtich `BUILD_LITE_INTERPRETER`, 'OFF' as default.
3. Add a mini demo app `lite_interpreter_demo` linked with `libtorch` library, which can be used for quick test.
## Test Plan
Built lite interpreter version of libtorch and test with Image Segmentation demo app ([android version](https://github.com/pytorch/android-demo-app/tree/master/ImageSegmentation)/[ios version](https://github.com/pytorch/ios-demo-app/tree/master/ImageSegmentation))
### Android
1. **Prepare model**: Prepare the lite interpreter version of model by run the script below to generate the scripted model `deeplabv3_scripted.pt` and `deeplabv3_scripted.ptl`
```
import torch
model = torch.hub.load('pytorch/vision:v0.7.0', 'deeplabv3_resnet50', pretrained=True)
model.eval()
scripted_module = torch.jit.script(model)
# Export full jit version model (not compatible lite interpreter), leave it here for comparison
scripted_module.save("deeplabv3_scripted.pt")
# Export lite interpreter version model (compatible with lite interpreter)
scripted_module._save_for_lite_interpreter("deeplabv3_scripted.ptl")
```
2. **Build libtorch lite for android**: Build libtorch for android for all 4 android abis (armeabi-v7a, arm64-v8a, x86, x86_64) `BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh`. This pr is tested on Pixel 4 emulator with x86, so use cmd `BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh x86` to specify abi to save built time. After the build finish, it will show the library path:
```
...
BUILD SUCCESSFUL in 55s
134 actionable tasks: 22 executed, 112 up-to-date
+ find /Users/chenlai/pytorch/android -type f -name '*aar'
+ xargs ls -lah
-rw-r--r-- 1 chenlai staff 13M Feb 11 11:48 /Users/chenlai/pytorch/android/pytorch_android/build/outputs/aar/pytorch_android-release.aar
-rw-r--r-- 1 chenlai staff 36K Feb 9 16:45 /Users/chenlai/pytorch/android/pytorch_android_torchvision/build/outputs/aar/pytorch_android_torchvision-release.aar
```
3. **Use the PyTorch Android libraries built from source in the ImageSegmentation app**: Create a folder 'libs' in the path, the path from repository root will be `ImageSegmentation/app/libs`. Copy `pytorch_android-release` to the path `ImageSegmentation/app/libs/pytorch_android-release.aar`. Copy 'pytorch_android_torchvision` (downloaded from [here](https://oss.sonatype.org/#nexus-search;quick~torchvision_android)) to the path `ImageSegmentation/app/libs/pytorch_android_torchvision.aar` Update the `dependencies` part of `ImageSegmentation/app/build.gradle` to
```
dependencies {
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'androidx.constraintlayout:constraintlayout:2.0.2'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'
implementation(name:'pytorch_android-release', ext:'aar')
implementation(name:'pytorch_android_torchvision', ext:'aar')
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
}
```
Update `allprojects` part in `ImageSegmentation/build.gradle` to
```
allprojects {
repositories {
google()
jcenter()
flatDir {
dirs 'libs'
}
}
}
```
4. **Update model loader api**: Update `ImageSegmentation/app/src/main/java/org/pytorch/imagesegmentation/MainActivity.java` by
4.1 Add new import: `import org.pytorch.LiteModuleLoader;`
4.2 Replace the way to load pytorch lite model
```
// mModule = Module.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.pt"));
mModule = LiteModuleLoader.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.ptl"));
```
5. **Test app**: Build and run the ImageSegmentation app in Android Studio,

### iOS
1. **Prepare model**: Same as Android.
2. **Build libtorch lite for ios** `BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=SIMULATOR BUILD_LITE_INTERPRETER=1 ./scripts/build_ios.sh`
3. **Remove Cocoapods from the project**: run `pod deintegrate`
4. **Link ImageSegmentation demo app with the custom built library**:
Open your project in XCode, go to your project Target’s **Build Phases - Link Binaries With Libraries**, click the **+** sign and add all the library files located in `build_ios/install/lib`. Navigate to the project **Build Settings**, set the value **Header Search Paths** to `build_ios/install/include` and **Library Search Paths** to `build_ios/install/lib`.
In the build settings, search for **other linker flags**. Add a custom linker flag below
```
-all_load
```
Finally, disable bitcode for your target by selecting the Build Settings, searching for Enable Bitcode, and set the value to No.
**
5. Update library and api**
5.1 Update `TorchModule.mm``
To use the custom built libraries the project, replace `#import <LibTorch/LibTorch.h>` (in `TorchModule.mm`) which is needed when using LibTorch via Cocoapods with the code below:
```
//#import <LibTorch/LibTorch.h>
#include "ATen/ATen.h"
#include "caffe2/core/timer.h"
#include "caffe2/utils/string_utils.h"
#include "torch/csrc/autograd/grad_mode.h"
#include "torch/script.h"
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/observer.h>
```
5.2 Update `ViewController.swift`
```
// if let filePath = Bundle.main.path(forResource:
// "deeplabv3_scripted", ofType: "pt"),
// let module = TorchModule(fileAtPath: filePath) {
// return module
// } else {
// fatalError("Can't find the model file!")
// }
if let filePath = Bundle.main.path(forResource:
"deeplabv3_scripted", ofType: "ptl"),
let module = TorchModule(fileAtPath: filePath) {
return module
} else {
fatalError("Can't find the model file!")
}
```
### Unit test
Add `test/cpp/lite_interpreter`, with one unit test `test_cores.cpp` and a light model `sequence.ptl` to test `_load_for_mobile()`, `bc.find_method()` and `bc.forward()` functions.
### Size:
**With the change:**
Android:
x86: `pytorch_android-release.aar` (**13.8 MB**)
IOS:
`pytorch/build_ios/install/lib` (lib: **66 MB**):
```
(base) chenlai@chenlai-mp lib % ls -lh
total 135016
-rw-r--r-- 1 chenlai staff 3.3M Feb 15 20:45 libXNNPACK.a
-rw-r--r-- 1 chenlai staff 965K Feb 15 20:45 libc10.a
-rw-r--r-- 1 chenlai staff 4.6K Feb 15 20:45 libclog.a
-rw-r--r-- 1 chenlai staff 42K Feb 15 20:45 libcpuinfo.a
-rw-r--r-- 1 chenlai staff 39K Feb 15 20:45 libcpuinfo_internals.a
-rw-r--r-- 1 chenlai staff 1.5M Feb 15 20:45 libeigen_blas.a
-rw-r--r-- 1 chenlai staff 148K Feb 15 20:45 libfmt.a
-rw-r--r-- 1 chenlai staff 44K Feb 15 20:45 libpthreadpool.a
-rw-r--r-- 1 chenlai staff 166K Feb 15 20:45 libpytorch_qnnpack.a
-rw-r--r-- 1 chenlai staff 384B Feb 15 21:19 libtorch.a
-rw-r--r-- 1 chenlai staff **60M** Feb 15 20:47 libtorch_cpu.a
```
`pytorch/build_ios/install`:
```
(base) chenlai@chenlai-mp install % du -sh *
14M include
66M lib
2.8M share
```
**Master (baseline):**
Android:
x86: `pytorch_android-release.aar` (**16.2 MB**)
IOS:
`pytorch/build_ios/install/lib` (lib: **84 MB**):
```
(base) chenlai@chenlai-mp lib % ls -lh
total 172032
-rw-r--r-- 1 chenlai staff 3.3M Feb 17 22:18 libXNNPACK.a
-rw-r--r-- 1 chenlai staff 969K Feb 17 22:18 libc10.a
-rw-r--r-- 1 chenlai staff 4.6K Feb 17 22:18 libclog.a
-rw-r--r-- 1 chenlai staff 42K Feb 17 22:18 libcpuinfo.a
-rw-r--r-- 1 chenlai staff 1.5M Feb 17 22:18 libeigen_blas.a
-rw-r--r-- 1 chenlai staff 44K Feb 17 22:18 libpthreadpool.a
-rw-r--r-- 1 chenlai staff 166K Feb 17 22:18 libpytorch_qnnpack.a
-rw-r--r-- 1 chenlai staff 384B Feb 17 22:19 libtorch.a
-rw-r--r-- 1 chenlai staff 78M Feb 17 22:19 libtorch_cpu.a
```
`pytorch/build_ios/install`:
```
(base) chenlai@chenlai-mp install % du -sh *
14M include
84M lib
2.8M share
```
Test Plan: Imported from OSS
Reviewed By: iseeyuan
Differential Revision: D26518778
Pulled By: cccclai
fbshipit-source-id: 4503ffa1f150ecc309ed39fb0549e8bd046a3f9c
Summary:
Usage explanation will be in the release note runbook.
This allows to generate diffs like:
```
Processing torch.nn
Things that were added:
{'quantizable', 'ChannelShuffle', 'LazyConvTranspose2d', 'LazyConv2d', 'LazyConvTranspose3d', 'LazyConv1d', 'GaussianNLLLoss', 'LazyConv3d', 'PixelUnshuffle', 'UninitializedParameter', 'LazyLinear', 'LazyConvTranspose1d'}
Things that were removed:
set()
```
This can then be shared with module owners along with the commits to help them validate that the namespace changes for their submodule is as expected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51685
Reviewed By: zhangguanheng66
Differential Revision: D26260258
Pulled By: albanD
fbshipit-source-id: 40e40f86314e17246899d01ffa4b2631e93b52f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51521
* Add loop & if node to the list of nodes that could produce sequence type output.
* Switch from `[]` to `at()` to avoid segfault of out of range access.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26203112
Pulled By: SplitInfinity
fbshipit-source-id: e990eeed933124b195be0be159271e33fb485063
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51517
Fix get/set attributes when getting/setting a model parameter.
This PR also fixes inplace ops in If blocks.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26203116
Pulled By: SplitInfinity
fbshipit-source-id: bed6ee6dd92b5b43febc8c584a6872290f8fe33f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50911
Need to replace dtype of export created scalars from float to double. (In torch implicit conversion logic, python numbers are double)
Test case skipped in CI due to that current CI job env does not have CUDA support.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26050889
Pulled By: SplitInfinity
fbshipit-source-id: 1fdde23a68d4793e6b9a82840acc213e5c3aa760
Summary:
Handle sequence output shape and type inference.
This PR fixes value type of sequence outputs. Prior to this, all model sequence type outputs were unfolded for ONNX models.
This PR also enable shape inference for sequence outputs to represent the dynamic shape of these values.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46542
Reviewed By: ezyang
Differential Revision: D24924236
Pulled By: bzinodev
fbshipit-source-id: 506e70a38cfe31069191d7f40fc6375239c6aafe