Summary:
This also removes the usage of torch.onnx.symbolic_override in instance_norm. Fixes#8439.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10792
Differential Revision: D9800643
Pulled By: li-roy
fbshipit-source-id: fa13a57de5a31fbfa2d4d02639d214c867b9e1f1
Summary:
Ping ezyang
This addresses your comment in #114. Strangely, when running the doc build (`make html`) none of my changes are actually showing, could you point out what I'm doing wrong?
Once #11329 is merged it might make sense to link to the reproducibility note everywhere.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11434
Differential Revision: D9751208
Pulled By: ezyang
fbshipit-source-id: cc672472449564ff099323c39603e8ff2b2d35c9
Summary:
This PR does two things:
1. Replaces the implementation of the `Dropout` module with a call to the ATen function,
2. Replaces `Dropout2d` with a new `FeatureDropout` module that shall take the place of `Dropout2d` and `Dropout3d`. I contemplated calling it `Dropout2d` and making `Dropout3d` an alias for it, but similar to our decision for `BatchNorm{1,2,3}d` (c.f. https://github.com/pytorch/pytorch/pull/9188), we can deviate from Python PyTorch in favor of the ideal-world solution, which is to have a single module, since both actually just call `feature_dropout`.
I also replaced the implementation of `dropout3d` with a call to `dropout2d` in Python. The code is the same and it's easier for developers to parse than having to manually match the tokens to make sure it's really 100% the same code (which it is, if I matched the tokens correctly).
ebetica ezyang SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11458
Differential Revision: D9756603
Pulled By: goldsborough
fbshipit-source-id: fe847cd2cda2b6da8b06779255d76e32a974807c
Summary:
Also add single grad whitelist to the jit test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10782
Reviewed By: ezyang
Differential Revision: D9583378
Pulled By: erikbrinkman
fbshipit-source-id: 069e5ae68ea7f3524dec39cf1d5fe9cd53941944
Summary:
Test only for existence for now. I had to skip a lot of them so there a FIXME in the test.
Also I'm not testing torch.* because of namespace issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10311
Differential Revision: D9196341
Pulled By: SsnL
fbshipit-source-id: 9c2ca1ffe660bc1cc664474993f8a21198525ccc
Summary:
closes#9702 .
cc jph00
Commit structure:
1. Change the index calculation logic. I will explain using 1-D for simplicity.
Previously we have (in pseudo code):
```
// 1. get the float locations from grid
scalar_t x = from_grid()
// 2. find the integral surrounding indices
int x_left = floor(x)
int x_right = x_left + 1
// 3. calculate the linear interpolate weights
scalar_t w_left = x_right - x
scalar_t w_right = x - x_left
// 4. manipulate the integral surrounding indices if needed
// (e.g., clip for border padding_mode)
x_left = manipulate(x_left, padding_mode)
x_right = manipulate(x_right, padding_mode)
// 5. interpolate
output_val = interpolate(w_left, w_right, x_left, x_right)
```
This is actually incorrect (and also unintuitive) because it calculates the
weights before manipulate out-of-boundary indices. Fortunately, this
isn't manifested in both of the current supported modes, `'zeros'` and
`'border'` padding:
+ `'zeros'`: doesn't clip
+ `'border'`: clips, but for out-of-bound `x` both `x_left` and `x_right` are
clipped to the same value, so weights don't matter
But this is a problem with reflection padding, since after each time we reflect,
the values of `w_left` and `w_right` should be swapped.
So in this commit I change the algorithm to (numbers corresponding to the
ordering in the above pseudo-code)
```
1. get float location
4. clip the float location
2. find the integral surrounding indices
3. calculate the linear interpolate weights
```
In the backward, because of this change, I need to add new variables to track
`d manipulate_output / d manipulate_input`, which is basically a multiplier
on the gradient calculated for `grid`. From benchmarking this addition doesn't
cause obvious slow downs.
2. Implement reflection padding. The indices will keep being reflected until
they become within boundary.
Added variant of `clip_coordinates` and `reflect_coordinates` to be used in
backward. E.g.,
```cpp
// clip_coordinates_set_grad works similarly to clip_coordinates except that
// it also returns the `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit, scalar_t *grad_in)
```
For example, if `in` is clipped in `'border'` mode, `grad_in` is set to `0`.
If `in` is reflected **odd** times in `'reflection'` mode, `grad_in`
is set to `-1`.
3. Implement nearest interpolation.
4. Add test cases
5. Add better input checking
Discussed with goldsborough for moving `operator<<` of `at::Device`,
`at::DeviceType` and `at::Layout` into `at` namespace. (Otherwise
`AT_CHECK` can't find them.)
6. Support empty tensors. cc gchanan
+ Make empty tensors not acceptable by cudnn.
+ Add `AT_ASSERT(kernel block size > 0)` if using `GET_BLOCKS`
+ Cache `numel` in `TensorGeometry`
I was going to use `numel` to test if cudnn descriptor should accept a
tensor, but it isn't used eventually. I can revert this if needed.
7. Add more test cases, including on input checking and empty tensors
8. Remove an obsolete comment
9. Update docs. Manually tested by generating docs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10051
Differential Revision: D9123950
Pulled By: SsnL
fbshipit-source-id: ac3b4a0a36b39b5d02e83666cc6730111ce216f6
Summary:
- fixes#9141, #9301
- use logsigmoid at multilabel_soft_margin_loss to make it more stable (NOT fixing legacy MultiLabelSoftMarginCriterion)
- return (N) instead of (N, C) to match the same behavior as MultiMarginLoss
- Note that with this PR, the following behavior is expected:
```
loss = F.multilabel_soft_margin_loss(outputs, labels, reduction='none')
loss_mean = F.multilabel_soft_margin_loss(outputs, labels, reduction='elementwise_mean')
loss_sum = F.multilabel_soft_margin_loss(outputs, labels, reduction='sum')
loss.sum() == loss_sum # True
loss.mean() == loss_mean # True
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9965
Differential Revision: D9038402
Pulled By: weiyangfb
fbshipit-source-id: 0fa94c7b3cd370ea62bd6333f1a0e9bd0b8ccbb9
Summary:
There is a regression in softmin in 0.4.1 that was not present in 0.4.0. The behavior of softmin(x) should match softmax(-x) however instead it is implemented (in v0.4.1) as -softmax(x). These are not the same. The fix is trivial because the bug is due to operator precedence.
This is a major regression that broke my training. I'm not sure how a unit test did not catch this.
```
x = torch.tensor([1, 2, 3.5, 4])
print(F.softmin(x, dim=0)) # this has the wrong output in 0.4.1 but correct in 0.4.0
print(F.softmax(-x, dim=0)) # this is what softmax should be
print(F.softmax(x, dim=0))
print(-F.softmax(x, dim=0)) # this is how softmax is implemented incorrectly
```
In 0.4.1 this produces
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
tensor([0.6668, 0.2453, 0.0547, 0.0332])
tensor([0.0278, 0.0755, 0.3385, 0.5581])
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
In 0.4.0 this produces the correct values
tensor([ 0.6668, 0.2453, 0.0547, 0.0332])
tensor([ 0.6668, 0.2453, 0.0547, 0.0332])
tensor([ 0.0278, 0.0755, 0.3385, 0.5581])
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10066
Differential Revision: D9106995
Pulled By: soumith
fbshipit-source-id: 7332503c6077e8461ad6cd72422c749cf6ca595b
Summary:
_pointwise loss has some python special casing, we converted reduction to aten enums too early.
fixes#10009
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10018
Differential Revision: D9075489
Pulled By: li-roy
fbshipit-source-id: 4bf2f5e2911e757602c699ee1ec58223c61d0162
Summary:
The CPU and CUDA variants are a direct transposition of Graves et al.'s description of the algorithm with the
modification that is is in log space.
The there also is a binding for the (much faster) CuDNN implementation.
This could eventually fix#3420
I still need to add tests (TestNN seems much more elaborate than the other testing) and fix the bugs than invariably turn up during the testing. Also, I want to add some more code comments.
I could use feedback on all sorts of things, including:
- Type handling (cuda vs. cpu for the int tensors, dtype for the int tensors)
- Input convention. I use log probs because that is what the gradients are for.
- Launch parameters for the kernels
- Errors and obmissions and anything else I'm not even aware of.
Thank you for looking!
In terms of performance it looks like it is superficially comparable to WarpCTC (and thus, but I have not systematically investigated this).
I have read CuDNN is much faster than implementations because it does *not* use log-space, but also the gathering step is much much faster (but I avoided trying tricky things, it seems to contribute to warpctc's fragility). I might think some more which existing torch function (scatter or index..) I could learn from for that step.
Average timings for the kernels from nvprof for some size:
```
CuDNN:
60.464us compute_alphas_and_betas
16.755us compute_grads_deterministic
Cuda:
121.06us ctc_loss_backward_collect_gpu_kernel (= grads)
109.88us ctc_loss_gpu_kernel (= alphas)
98.517us ctc_loss_backward_betas_gpu_kernel (= betas)
WarpCTC:
299.74us compute_betas_and_grad_kernel
66.977us compute_alpha_kernel
```
Of course, I still have the (silly) outer blocks loop rather than computing consecutive `s` in each thread which I might change, and there are a few other things where one could look for better implementations.
Finally, it might not be unreasonable to start with these implementations, as the performance of the loss has to be seen in the context of the entire training computation, so this would likely dilute the relative speedup considerably.
My performance measuring testing script:
```
import timeit
import sys
import torch
num_labels = 10
target_length = 30
input_length = 50
eps = 1e-5
BLANK = 0#num_labels
batch_size = 16
torch.manual_seed(5)
activations = torch.randn(input_length, batch_size, num_labels + 1)
log_probs = torch.log_softmax(activations, 2)
probs = torch.exp(log_probs)
targets = torch.randint(1, num_labels+1, (batch_size * target_length,), dtype=torch.long)
targets_2d = targets.view(batch_size, target_length)
target_lengths = torch.tensor(batch_size*[target_length])
input_lengths = torch.tensor(batch_size*[input_length])
activations = log_probs.detach()
def time_cuda_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo, culog_alpha = torch._ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_cudnn_ctc_loss(groupt, *args):
torch.cuda.synchronize()
culo, cugra= torch._cudnn_ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_warp_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo = warpctc.ctc_loss(*args, blank_label=BLANK, size_average=False, length_average=False, reduce=False)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
if sys.argv[1] == 'cuda':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets_2d.cuda(), input_lengths.cuda(), target_lengths.cuda(), BLANK]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cuda_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'cudnn':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets.int(), input_lengths.int(), target_lengths.int(), BLANK, True]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cudnn_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'warpctc':
import warpctc
activations = activations.cuda().detach().requires_grad_()
args = [activations, input_lengths.int(), targets.int(), target_lengths.int()]
grout = activations.new_ones((batch_size,), device='cpu')
torch.cuda.synchronize()
print(timeit.repeat("time_warp_ctc_loss(grout, *args)", number=1000, globals=globals()))
```
I'll also link to a notebook that I used for writing up the algorithm in simple form and then test the against implementations against it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9628
Differential Revision: D8952453
Pulled By: ezyang
fbshipit-source-id: 18e073f40c2d01a7c96c1cdd41f6c70a06e35860
Summary:
As in the title. Lets us simplify a lot of code.
Depends on #9363, so please review only the last commit.
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9414
Reviewed By: zdevito
Differential Revision: D8836496
Pulled By: apaszke
fbshipit-source-id: 9b3c3d1f001a9dc522f8478abc005b6b86cfa3e3
Summary:
It implements per-channel alpha_dropout. It also creates corresponding function classes and unifies the process of dropout and alpha_dropout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9073
Differential Revision: D8727008
Pulled By: ezyang
fbshipit-source-id: 9d509f9c5db4e98f7b698cdfc4443505a4d2b331
Summary:
Commits:
1. In extension doc, get rid of all references of `Variable` s (Closes#6947 )
+ also add minor improvements
+ also added a section with links to cpp extension :) goldsborough
+ removed mentions of `autograd.Function.requires_grad` as it's not used anywhere and hardcoded to `return_Py_True`.
2. Fix several sphinx warnings
3. Change `*` in equations in `module/conv.py` to `\times`
4. Fix docs for `Fold` and `Unfold`.
+ Added better shape check for `Fold` (it previously may give bogus result when there are not enough blocks). Added test for the checks.
5. Fix doc saying `trtrs` not available for CUDA (#9247 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9239
Reviewed By: soumith
Differential Revision: D8762492
Pulled By: SsnL
fbshipit-source-id: 13cd91128981a94493d5efdf250c40465f84346a
Summary:
This PR addresses #5823.
* fix docstring: upsample doesn't support LongTensor
* Enable float scale up & down sampling for linear/bilinear/trilinear modes. (following SsnL 's commit)
* Enable float scale up & down sampling for nearest mode. Note that our implementation is slightly different from TF that there's actually no "align_corners" concept in this mode.
* Add a new interpolate function API to replace upsample. Add deprecate warning for upsample.
* Add an area mode which is essentially Adaptive_average_pooling into resize_image.
* Add test cases for interpolate in test_nn.py
* Add a few comments to help understand *linear interpolation code.
* There is only "*cubic" mode missing in resize_images API which is pretty useful in practice. And it's labeled as hackamonth here #1552. I discussed with SsnL that we probably want to implement all new ops in ATen instead of THNN/THCUNN. Depending on the priority, I could either put it in my queue or leave it for a HAMer.
* After the change, the files named as *Upsampling*.c works for both up/down sampling. I could rename the files if needed.
Differential Revision: D8729635
Pulled By: ailzhang
fbshipit-source-id: a98dc5e1f587fce17606b5764db695366a6bb56b
Summary:
1. Let `ModuleTest` raise when they fail on non-contiguous inputs. Fix legacy modules.
2. Fix BN (both THNN and cuDNN) not working on non-contiguous inputs.
3. Fix CUDA EmbeddingBag not working on non-contiguous inputs. To prevent calling `.contiguous()` on in both `forward` and `backward`,
a. prefix all current `embedding_bag*` functions with `_`, indicating that they require input to be contiguous (there is a check in each function).
b. create `embedding_bag`, which makes input arguments `.contiguous()`, and calls `_embedding_bag`
3. Make many ATen `embedding*` functions to work on non-contiguous inputs so we don't need to call `input = input.contiguous()` in Python `nn.functional.embedding`.
4. Fix dense-sparse addition when the sparse input is not coalesced and indices or values tensor is not contiguous. This came up in the test cases of Embedding modules with `sparse=True`. Added tests.
5. Update `TensorUtils.cpp` to use `AT_*` macros.
Request:
review from cpuhrsch on the `Embedding*` changes.
review from ezyang on ATen sparse & BN changes.
Closes https://github.com/pytorch/pytorch/pull/9114
Differential Revision: D8717299
Pulled By: SsnL
fbshipit-source-id: 0acc6f1c9522b5b605361e75112c16bbe1e98527
Summary:
The tests were using the old args, which caused them to emit a lot of deprecation warnings.
closes#9103.
Reviewed By: ezyang
Differential Revision: D8720581
Pulled By: li-roy
fbshipit-source-id: 3b79527f6fe862fb48b99a6394e8d7b89fc7a8c8
* Add pos_weight argument to nn.BCEWithLogitsLoss and F.binary_cross_entropy_with_logits (#5660)
- Add an option to control precision/recall in imbalanced datasets
- Add tests (but new_criterion_tests)
* Move pos_weight to the end of args list in the documentation.
`pos_weight` was moved to the end because it is the last argument in both
`nn.BCEWithLogitsLoss` and `binary_cross_entropy_with_logits`
* 1. added hardshrink() to ATen (CPU + GPU); 2. removed nn.Hardshrink(); 3. reusing previous tests for nn.Hardshrink() and included CUDA tests at test_nn; 4. default parameter lambda=0.5 is not working yet
* optimized memory read/write
* 1. pass in lambd as scalar for CPU/CUDA_apply*; 2. removed tests for hardshrink at test_legacy_nn
* fixes test_utils
* 1. replace zeros_like with empty_like; 2. use scalar_cast in cuda
* 1. printing lambd value; 2. default lambd=0.5 is still failing
* getting around Scalar bug buy removing default value of lambd from native_functions.yaml, and declare it at nn/functional.py
* cleaned up debug printf
* move softmax/logsoftmax to ATen
* specify cpu and gpu accum types
* use accreal for CPU
* expose softmax backward to python, fix legacy interface
* fix Distributions.cu to use common AccumulateType
* fix cuda 8 build
* delete commented out lines
* rebase on master, fix breakages
* Add max mode support to EmbeddingBag
* Lint fix
* Fix compilation issue on other platforms
* Rebase + don't waste memory when not in max mode
* Oops, missed a spot
* Fix whitespace from merge
* less precision
* Lower precision to avoid spurious failures
* Minor typo
* Switch to size()
* Added ReLU unit to LP pooling, so the gradient does not become NAN if all inputs are zero.
* Added workaround for odd p. Added a bit of doc.
* Make the linter happy.
* Codemod to update our codebase to 0.4 standard
* Update some of the test scri[ts
* remove Variable in test_clip_grad_value
* fix _symbolic_override_wrapper_maker
Fixes#5554
Adds an error message for when NLLLoss is passed an input and target
whose batch sizes don't match. Ideally this check should live in ATen
but since there is NLLLoss logic in python the check is there right now.