Commit Graph

390 Commits

Author SHA1 Message Date
Thiago Crepaldi
75933ff523 Ignore logging.Logger.* calls during dynamo export (#123402)
Follow up for https://github.com/pytorch/pytorch/pull/123368

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123402
Approved by: https://github.com/williamwen42
2024-04-08 22:50:54 +00:00
Michael Lazos
73e235f0a6 Swap to ID guard for optimizer Variable (#123496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123496
Approved by: https://github.com/anijain2305
2024-04-08 19:28:25 +00:00
PyTorch MergeBot
3e8d3577be Revert "Swap to ID guard for optimizer Variable (#123496)"
This reverts commit 26bf05ccac.

Reverted https://github.com/pytorch/pytorch/pull/123496 on behalf of https://github.com/PaliC due to seems to have broken distributed/fsdp/test_fsdp_hybrid_shard.py as per 26bf05ccac ([comment](https://github.com/pytorch/pytorch/pull/123496#issuecomment-2043251234))
2024-04-08 17:06:05 +00:00
Michael Lazos
26bf05ccac Swap to ID guard for optimizer Variable (#123496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123496
Approved by: https://github.com/anijain2305
2024-04-08 05:03:34 +00:00
Will Feng
7b02910163 [Compile FSDP2][2/n] Support streams created outside of compile region (#123487)
FSDP2 creates CUDA streams outside of compile region in its 1st iteration eager run, and then torch.compile will attempt to record method calls on these streams (e.g. `stream.record_event()`) in >1st iteration compiled run.

Before this PR, stream proxy is None which causes "None doesn't have attribute record_event" error when we try to call `record_event()` on it. After this PR, stream proxy has the correct value which makes calling methods on it possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123487
Approved by: https://github.com/jansel
2024-04-06 08:42:42 +00:00
Animesh Jain
fb7664d5bf [dynamo][optimizer][guard-overhead] NOT_NONE guard for param.grad instead of TENSOR_MATCH (#123285)
For optimizers, we do an DATA_PTR match for parameters. For param.grad, we were doing TENSOR_MATCH, but what we really need to guard is if param.grad is None or not. Therefore, I add a new guard called NOT_NONE.

Further improves the guard overhead

![image](https://github.com/pytorch/pytorch/assets/13822661/574598ac-ca71-4e5e-9e75-8774577cd58f)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123285
Approved by: https://github.com/mlazos, https://github.com/jansel
2024-04-04 03:52:47 +00:00
Animesh Jain
969bbf8e82 [dynamo][guards] Skip aliasing guards for optimizers (#123044)
I am ok if people don't want this PR to be merged.

For optimizers, we know that the state dict and param_group have same parameters. So, I think its ok to skip TENSOR_MUST_ALIAS guards.

Similarly for state tensors, all of them are different. Therefore, we can skip the tensor aliasing guards.

With this PR, these are the numbers for Megatron which has 394 parameters

<img width="290" alt="image" src="https://github.com/pytorch/pytorch/assets/13822661/0ce75dc6-4299-46bb-bf3c-7989ebc7cfc4">

C++ numbers jump a lot because of 2 reasons
1) We are now not doing INCREF/DECREF for a large number of tensors.
2) For python guards, we can expect higher numbers but that requires some more plumbing because the Python tensor guards are all collapsed into one.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123044
Approved by: https://github.com/jansel, https://github.com/mlazos
2024-04-02 08:51:00 +00:00
drisspg
557e7c9c16 Add some type hints to functions and update a few spelling mistakes (#123015)
# Summary
While working on this PR: https://github.com/pytorch/pytorch/pull/121845
I found that these type hints made my ide/ noob experience easier to reason about

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123015
Approved by: https://github.com/Skylion007
2024-03-30 21:15:01 +00:00
Simon Fan
1d96791661 [dynamo] Fix list proxy to list element proxy source propagation (#122691)
Currently, when we create proxies for a list's elements in wrap_fx_proxy_cls, we create them using the same source as the list's e.g. `LocalSource(inputs)` instead of `GetItemSource(LocalSource(inputs), index=i)`. This results in invalid guards when the tensors it contains becomes dynamic, and the guard system thinks the list is a tensor:
```
Malformed guard:
L['sizes'][0] == L['inputs'].size()[0]
Malformed guard:
2 <= L['inputs'].size()[0]

Traceback [...]
AttributeError: 'list' object has no attribute 'size'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122691
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-03-28 14:40:54 +00:00
Joel Schlosser
07b618e2d4 Graph break cleanly in Dynamo for module parametrization (#121041)
Fixes #118795

This is a graph breaking partial fix for #120914. We still need -actual- module parametrization tracing support, but at least it doesn't blow up hard now.

**Background**: Module parametrization injects a property as the module parameter attribute that calls a `nn.Module` whose forward takes in a module parameter and returns a reparametrized module parameter.
Example:
```
class MyParametrization(nn.Module):
    def forward(X):
        # This reparametrization just negates the original parameter value
        return -X

m = nn.Linear(...)
p = MyParametrization()
register_parametrization(m, "weight", p)

# Accessing the "weight" attribute will invoke p's forward() on m's original weight and return the output as the new weight.
# m.weight here is now an injected property that does the above instead of an actual Parameter.
# This property is defined in torch/nn/utils/parametrize.py.
m.weight

# NB: Parametrization changes the module type (e.g. torch.nn.utils.parametrize.ParametrizedLinear)
print(type(m))
```

**Problem 1**: Dynamo has special tracing rules for things in `torch.nn`. Parametrizing a module changes the type of the module and the parametrized attribute, so now these rules wrongly affect tracing here. To fix this:
* For parametrized modules, call `convert_to_unspecialized()` to restart analysis where Dynamo starts inlining the module.

**Problem 2**: The issue seen in #118795 is that Dynamo will see a dynamically constructed tensor when `m.weight` is called and introduce that to its `tensor_weakref_to_sizes_strides` cache during fake-ification. This tensor is also made to be a graph input, since it's a module parameter. When guards are created for this module parameter input, the logic calls `m.weight` again and tries to look the result up in the cache, but this is a different tensor now, giving the `KeyError` symptom. To fix this:
* Replace Dynamo's `tensor_weakref_to_sizes_strides` cache with a `input_source_to_sizes_strides` cache.
    * This cache was originally introduced in #100128.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121041
Approved by: https://github.com/anijain2305
2024-03-26 23:44:51 +00:00
Yifu Wang
36188360dd [dynamo] support torch.distributed.{group.WORLD, GroupMember.WORLD, distributed_c10d._get_default_group} (#120560)
Fixes https://github.com/pytorch/pytorch/issues/120431

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120560
Approved by: https://github.com/wconstab
2024-03-24 11:13:05 +00:00
Guilherme Leobas
4eaa000acc Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-22 20:25:47 +00:00
Joel Schlosser
cd6bfc7965 Proper view support for jagged layout NestedTensor (#113279)
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
    * `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
    * This ops is implemented on the Python side using torch.library so we can return a subclass instance
    * `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
    * The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
    * `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
    * `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
    * Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)

With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.

Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
2024-03-22 02:12:36 +00:00
PyTorch MergeBot
224beecee6 Revert "Proper view support for jagged layout NestedTensor (#113279)"
This reverts commit 5855c490f0.

Reverted https://github.com/pytorch/pytorch/pull/113279 on behalf of https://github.com/jbschlosser due to Need to fix BC thing ([comment](https://github.com/pytorch/pytorch/pull/113279#issuecomment-2013899762))
2024-03-21 22:03:01 +00:00
Joel Schlosser
5855c490f0 Proper view support for jagged layout NestedTensor (#113279)
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
    * `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
    * This ops is implemented on the Python side using torch.library so we can return a subclass instance
    * `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
    * The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
    * `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
    * `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
    * Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)

With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.

Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
2024-03-20 23:45:34 +00:00
PyTorch MergeBot
0696db8202 Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit 17489784b6.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/peterbell10 due to broken mac jobs on main ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2010327997))
2024-03-20 18:34:43 +00:00
Guilherme Leobas
17489784b6 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-20 13:09:19 +00:00
Jason Ansel
46bf37b3f7 [dynamo] Replace VariableTracker.apply with visit/realize_all (#122218)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122218
Approved by: https://github.com/anijain2305
2024-03-20 07:53:18 +00:00
PyTorch MergeBot
36e5c1dcab Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit edd04b7c16.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/jeanschmidt due to lots of breakages in pull jobs, checking if reverting this one will help ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2007915919))
2024-03-19 18:59:46 +00:00
Guilherme Leobas
edd04b7c16 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-19 13:06:42 +00:00
Jason Ansel
153a01833b [dynamo] Optimize SourcelessBuilder (#122063)
Improves `benchmarks/dynamo/microbenchmarks/dynamo_microbenchmarks.py`
from 2.7s to 2.5s.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122063
Approved by: https://github.com/anijain2305
ghstack dependencies: #122039, #122043, #122055, #122058, #122060
2024-03-19 04:23:30 +00:00
Jason Ansel
6ca0323615 [dynamo] Optimize VariableTracker.__post_init__ (#122034)
Improves `benchmarks/dynamo/microbenchmarks/dynamo_microbenchmarks.py`
from 8.6s to 7.3s.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122034
Approved by: https://github.com/Skylion007
ghstack dependencies: #122032, #122033
2024-03-18 18:08:06 +00:00
Animesh Jain
d04faf4531 [dynamo][compile-time] Remove preserve rng state per op (#121923)
We already have one globally - 02bb2180f4/torch/_dynamo/convert_frame.py (L477)

I don't think we need per op.

Saves ~2 seconds on this benchmark

~~~
def fn(x):
    for _ in range(10000):
        x = torch.ops.aten.sin(x)
    return x
~~~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121923
Approved by: https://github.com/jansel
2024-03-15 18:24:46 +00:00
Animesh Jain
78b4793c96 [dynamo][compile-time] Caching VTs to reduce compile-time (#121031)
Reduces the `torch.compile(backend="eager")` for this code

~~~
def fn(x):
    for _ in range(10000):
        # x = torch.sin(x)
        x = torch.ops.aten.sin(x)
        # x = sin(x)

    return x
~~~

From 18 seconds to 12 seconds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121031
Approved by: https://github.com/jansel
2024-03-12 09:19:50 +00:00
Jason Ansel
7cc476ea16 [dynamo] Fix support for nn.Parameter constructor (part 1) (#120163)
This captures calls to `torch.nn.Parameter` by lifting them to graph inputs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120163
Approved by: https://github.com/albanD, https://github.com/yanboliang
ghstack dependencies: #121086
2024-03-11 05:14:42 +00:00
Jason Ansel
32488b0664 [dynamo] Support _unsafe_set_version_counter (#121086)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121086
Approved by: https://github.com/yanboliang
2024-03-11 05:14:42 +00:00
Dheeraj Peri
b1657beac1 feat: Add min, max ranges to mark_dynamic API (#119737)
Fixes https://github.com/pytorch/pytorch/issues/115137

This PR adds:

- mark_dynamic API will accept `min`, `max` values to create a bounded constraint on the dim.
- test case in test_misc.py which checks if `ConstraintViolationError` is triggered if `torch.compile` gets a input dimension out of bounds.

Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119737
Approved by: https://github.com/ezyang, https://github.com/jansel
2024-03-07 23:26:03 +00:00
Joel Schlosser
ea8f6e2e54 Subclass view fake-ification via reified ViewFuncs (#118405)
This PR:
* Uses reified ViewFuncs to swap in fake tensors / symbolic SymInts for view replay during subclass view fake-ification
* Enables automatic dynamic on view bases -> fakeifies according to the resultant symbolic context instead of the old "all-static" approach
* Covers the following view types:
    * subclass -> dense
    * dense -> subclass
    * subclass -> subclass
* Dense -> dense views are handled the old way via an `as_strided()` call, as it's likely there is no view func available

Differential Revision: [D54269082](https://our.internmc.facebook.com/intern/diff/D54269082)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118405
Approved by: https://github.com/ezyang
2024-03-07 19:56:16 +00:00
Pearu Peterson
ce2903080c Add sparse compressed fake tensor support (#120920)
As in the title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120920
Approved by: https://github.com/ezyang
2024-03-04 14:38:45 +00:00
angelayi
c844b377fa [dynamo] Reorder logs (#116106)
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.

Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600

There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly

TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
2024-03-01 17:04:24 +00:00
Aaron Orenstein
8861507ba3 Fix guard for SUPPORTED_NODES (#120798)
The special-case code for handling SUPPORTED_NODES was producing a guard that looked like:
```
"G['torch'].utils._pytree.SUPPORTED_NODES[<class '__main__.CausalLMOutputWithPast'>].type"
```
resulting in a eval error trying to evaluate the guard.

This change adds a new source type (`ClassSource`) which is given a class type (in this case `CausalLMOutputWithPast`) and attempts to fetch it from its defining module.  It then uses that to build the `SUPPORTED_NODES` guards instead of referring to the type directly.

Also added a unit test which fails before this change and passes after.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120798
Approved by: https://github.com/anijain2305
2024-03-01 16:03:21 +00:00
PyTorch MergeBot
63b259492a Revert "[dynamo] Reorder logs (#116106)"
This reverts commit c5472628ff.

Reverted https://github.com/pytorch/pytorch/pull/116106 on behalf of https://github.com/clee2000 due to landrace with 342e7929b8, which removed the import for warnings.  Should be an easy fix after rebase c5472628ff ([comment](https://github.com/pytorch/pytorch/pull/116106#issuecomment-1972586180))
2024-03-01 06:25:46 +00:00
Angela Yi
c5472628ff [dynamo] Reorder logs (#116106)
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.

Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600

There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly

TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
2024-03-01 04:48:44 +00:00
Jason Ansel
e3dbd194f4 [dynamo] Support module backwards hooks (#120685)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120685
Approved by: https://github.com/yanboliang, https://github.com/xmfan
2024-03-01 02:24:26 +00:00
PyTorch MergeBot
33da8d5c12 Revert "Fix guard for SUPPORTED_NODES (#120798)"
This reverts commit 1b8bb027f6.

Reverted https://github.com/pytorch/pytorch/pull/120798 on behalf of https://github.com/kit1980 due to the new test fails internally, see D54343456 ([comment](https://github.com/pytorch/pytorch/pull/120798#issuecomment-1972134227))
2024-02-29 23:19:22 +00:00
Nikita Shulga
14c5ebc8a1 [Dynamo] Do not attempt to make nditer spawned arrays writable (#120868)
As they are not, converting `numpy.nditer` to writable is too expensive and  tensor values are copied anyway

Minimal reproducer:
```python
import numpy as np
import torch

@torch.compile
def f(x):
    return x + 1.0

for x in np.nditer(np.arange(3)):
    print(f(x))
```

Fixes https://github.com/pytorch/pytorch/issues/119787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120868
Approved by: https://github.com/jansel
2024-02-29 07:49:59 +00:00
Animesh Jain
66d05a8900 [dynamo] Fix source for default dict default_factory (#120864)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120864
Approved by: https://github.com/yanboliang, https://github.com/Skylion007, https://github.com/jansel
2024-02-29 07:25:13 +00:00
Aaron Orenstein
1b8bb027f6 Fix guard for SUPPORTED_NODES (#120798)
The special-case code for handling SUPPORTED_NODES was producing a guard that looked like:
```
"G['torch'].utils._pytree.SUPPORTED_NODES[<class '__main__.CausalLMOutputWithPast'>].type"
```
resulting in a eval error trying to evaluate the guard.

This change adds a new source type (`ClassSource`) which is given a class type (in this case `CausalLMOutputWithPast`) and attempts to fetch it from its defining module.  It then uses that to build the `SUPPORTED_NODES` guards instead of referring to the type directly.

Also added a unit test which fails before this change and passes after.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120798
Approved by: https://github.com/anijain2305
2024-02-28 23:34:17 +00:00
Jason Ansel
01ec8df6d8 [Compiled Autograd] Introduce BackwardState capture (#120382)
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)

We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan
2024-02-28 20:36:47 +00:00
Guilherme Leobas
491c2b4665 Let torch dynamo inline torch.func.grad (#118407)
When dynamo sees torch.func.grad, it tries to inline all frames related
to.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118407
Approved by: https://github.com/zou3519
2024-02-28 20:05:00 +00:00
Avik Chaudhuri
5472923998 derived dim (#118729)
With the current `Dim`-based dynamic shapes API for export, one can express that shapes of different input shapes must be equal by reusing the same `Dim`. However, non-trivial relationships between such input shapes cannot be expressed.

Recently we are seeing more and more examples of code that require this additional expressibility, e.g., where a pair of shapes might differ by one, or a shape might be double another (or simply even).

This PR introduces the concept of a "derived" `Dim`, i.e., a linear arithmetic expression over a `Dim`. By using a combination of `Dim`s and derived `Dim`s to specify input shapes, the desired relationships can be expressed naturally. E.g., a pair of shapes might be `dim` and `dim + 1`, or `dim` and `2*dim`, or even `2*dim` and `dim + 1`.

We extend the current infrastructure that translates `Dim`s to deprecated `dynamic_dim`-based constraints to work with derived `Dim`s. As usual, we raise constraint violation errors when shape guards cannot be verified given a dynamic shapes spec; suggest fixes; and raise runtime errors when future inputs violate the spec.

Importantly, some guards that used to cause forced specializations in the constraint solver because they were deemed "too complex" now do not do so, because they can now be specified as constraints. Since this was what motivated the introduction of a `disable_constraint_solver` flag to some internal APIs, we may not need that flag any more.

Note that shapes of placeholders in exported programs can now contain symbolic expressions and not just symbols.

Differential Revision: D53254587

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118729
Approved by: https://github.com/ezyang
2024-02-28 19:48:32 +00:00
Animesh Jain
5a53c0ff23 [dynamo][refactor] Rename LIST_LENGTH to SEQUENCE_LENGTH, separate DICT_LENGTH (#120721)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120721
Approved by: https://github.com/jansel
ghstack dependencies: #120520, #120590
2024-02-28 02:19:10 +00:00
Yanbo Liang
5a0a964444 [Dynamo] Fix guards for script_if_tracing or lru_cache fn with default args (#120390)
Fixes #120387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120390
Approved by: https://github.com/anijain2305
2024-02-26 19:40:14 +00:00
Jason Ansel
2fea475215 [dynamo] Refactor reconstruct() not to return anything (#120150)
This simplifies things slightly and avoids some bugs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120150
Approved by: https://github.com/yanboliang
2024-02-17 17:13:41 +00:00
Brian Hirsh
26343451be DTensor: make tensor_flatten more compatible for dynamo getattr (#118209)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118209
Approved by: https://github.com/ezyang, https://github.com/wanchaol
ghstack dependencies: #117667, #117666
2024-02-16 21:16:07 +00:00
soulitzer
312ce35c1f Rename singleton int to nested int (#119661)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119661
Approved by: https://github.com/ezyang
2024-02-16 19:21:17 +00:00
Animesh Jain
80379ef0aa [dynamo-must-fix] Use ID_MATCH for UserDefinedClass (#119853)
Fixes https://github.com/pytorch/pytorch/issues/119715

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119853
Approved by: https://github.com/jansel
2024-02-14 03:14:42 +00:00
Yanbo Liang
0e5b6594b7 [Dynamo] Minor cleanup of redundant function lookup logics (#119666)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119666
Approved by: https://github.com/angelayi
2024-02-12 19:00:39 +00:00
Yanbo Liang
0f478d9d61 [Dynamo][15/N] Merge allow_in_graph/inline/skip trace rules check into trace_rule.lookup (#118971)
Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function.
* ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip.
* ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check.
  *  I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups.
* Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule.

To avoid a single big PR, I left a few items as the follow-ups:
* Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```.
* We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```.
* Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions.
* The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971
Approved by: https://github.com/jansel
2024-02-07 05:15:39 +00:00
Jason Ansel
62cc1053d8 [dynamo] Fix missing guards in FunctoolsPartialVariable (#118616)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118616
Approved by: https://github.com/yanboliang
ghstack dependencies: #118901
2024-02-06 23:42:43 +00:00