Commit Graph

150 Commits

Author SHA1 Message Date
Edward Yang
838f22c57d Do not incorrectly chain each of the strings as iterables (#160709)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160709
Approved by: https://github.com/Skylion007, https://github.com/fduwjj
2025-08-15 23:22:24 +00:00
Luca Wehrstedt
aeb5321b63 Allow controlling PG backend and options via init_device_mesh (#159371)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159371
Approved by: https://github.com/wconstab, https://github.com/fduwjj, https://github.com/wanchaol
2025-08-05 12:44:14 +00:00
fduwjj
fd48681b6a [DeviceMesh][ez] Make the logic within flatten simpler (#158999)
While looking at the code of device mesh I find that this logic can be simplified. Also the naming needs to be correct. Because this mesh is not "flattened" yet, so we can just call it flatten.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158999
Approved by: https://github.com/wz337, https://github.com/wconstab
ghstack dependencies: #158900
2025-07-24 15:40:13 +00:00
fduwjj
633d5faf3f [DeviceMesh] Enable slicing a submesh with warnings (#158899)
We don't create new PGs when doing slicing in DeviceMesh so it is relatively safe to relax the requirement of one can only do slicing from root mesh. But this does come with caveat when it is asymmetric, for example, only some have the sliced out submesh, for example. So aside from removing the requirement we also add a warning here.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158899
Approved by: https://github.com/wz337
2025-07-23 21:13:41 +00:00
Panagiotis Kourdis
fd47401536 [doc] Updates to distributed.md for XCCL backend (#155834)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155834
Approved by: https://github.com/guangyey, https://github.com/AlannaBurke, https://github.com/d4l3k

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
2025-07-22 21:01:43 +00:00
fduwjj
6499420e45 [DeviceMesh] Make the repr shorter when debug ENV not set (#158822)
Users want a shorter repr so this PR is trying to address that when TORCH_DISTRIBUTED_DEBUG is not set to DETAIL. Feedback and discussion is welcomed. Somehow I found that torch.set_printoptions is global, so I am hesitated to use it.

Now the print is like

<img width="435" height="79" alt="image" src="https://github.com/user-attachments/assets/8f173287-7138-4fbe-a4a3-8483523b21e4" />

or

<img width="485" height="104" alt="image" src="https://github.com/user-attachments/assets/21e34db9-56b5-47e2-9767-750d6105a273" />

or

<img width="675" height="97" alt="image" src="https://github.com/user-attachments/assets/53aa763e-7edd-4622-9cdb-37e2af8ec11f" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158822
Approved by: https://github.com/wz337, https://github.com/wconstab, https://github.com/xmfan
2025-07-22 20:31:44 +00:00
fduwjj
63a96eaeb8 [DeviceMesh] Add error when users try to slice non contiguous flattened dim submesh (#157523)
With https://github.com/pytorch/pytorch/issues/157393, we want to first throw a clearer error for users and then fix it in the long-term

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157523
Approved by: https://github.com/fegin
ghstack dependencies: #157501
2025-07-07 19:43:51 +00:00
fduwjj
2b8d3b1b2b [DeviceMesh] Use user set backend and pg option even for the global mesh (#157501)
Short term solution to https://github.com/pytorch/pytorch/issues/156593.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157501
Approved by: https://github.com/fegin, https://github.com/lw
2025-07-07 19:43:51 +00:00
Tom Ritchford
e3afbb0362 [inductor] Add typing to _inductor/ir.py (#149958)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149958
Approved by: https://github.com/Skylion007
2025-06-30 15:56:35 +00:00
vfdev
456b7451c7 Minor error message fix in device_mesh.py (#157096)
Fixed error message:
On main:
```
KeyError: ("Invalid mesh_dim_names ('dp_shard', 'dp_shard') specified. ", 'Found mesh dim indices to slice: [(1,), (1,)]. ', 'Mesh dim indices should be in ascending order.')
```
On PR:
```
KeyError: Invalid mesh_dim_names ('dp_shard', 'dp_shard') specified. Found mesh dim indices to slice: [(1,), (1,)]. Mesh dim indices should be in ascending order.'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157096
Approved by: https://github.com/Skylion007
2025-06-27 17:42:29 +00:00
Xuehai Pan
4ccc0381de [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-23 02:57:28 +00:00
PyTorch MergeBot
145d4cdc11 Revert "[BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)"
This reverts commit c2f0292bd5.

Reverted https://github.com/pytorch/pytorch/pull/156315 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
Xuehai Pan
c2f0292bd5 [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-22 08:43:26 +00:00
Aaron Orenstein
e95e8eed0a mypy 1.16.0 (#155821)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155821
Approved by: https://github.com/ezyang, https://github.com/zou3519
2025-06-14 18:18:43 +00:00
PyTorch MergeBot
7e4c097b07 Revert "[inductor] Add typing to _inductor/ir.py (#149958)"
This reverts commit 529e0357c6.

Reverted https://github.com/pytorch/pytorch/pull/149958 on behalf of https://github.com/malfet due to Looks like it broke inductor_torchbind tests, due to more graphbreaks, see b0fbbef136/1 ([comment](https://github.com/pytorch/pytorch/pull/149958#issuecomment-2949583209))
2025-06-06 15:19:16 +00:00
Tom Ritchford
529e0357c6 [inductor] Add typing to _inductor/ir.py (#149958)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149958
Approved by: https://github.com/Skylion007
2025-06-06 14:15:01 +00:00
Jane Xu
8817e5ac80 Render Example: and not Example:: in docs (#153978)
Everything here is a grep except the changes in tools/autograd/load_derivatives.py which I manually corrected.

The correct notation is:
```
Example::

    >>> ...
```

It is common and wrong to have:
```
Example::
    >>> ...
```

In the wrong example, we get these pesky double colons:
![image](https://github.com/user-attachments/assets/20ffd349-68bb-4552-966c-e23923350476)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153978
Approved by: https://github.com/soulitzer, https://github.com/malfet
2025-05-21 01:03:26 +00:00
Wanchao Liang
4c5cf18ee0 [device_mesh] improve device selection logic (#150897)
as titled, this PR improves the device selection logic when user did not
set the device before calling the DeviceMesh constructor, as a device
manager, DeviceMesh should try to set the device for users in a good
way.

The behavior of set_device before:

* If user call init_process_group to init a world process group, we assume user already called set_device and we don't set the device for the user
* If user does not init a world process group by themselves, we init a world process group for the user and follow a heuristic to set the device.
This is ok but sometimes the set_device heuristic wouldn't work well (i.e. if user use TORCH_CUDA_VISBILE_DEVICES

So this PR improves the device selection logic to:

* If the default cuda context is initialized by the time we init DeviceMesh, then we assume user must called some cuda operation before therefore must have selected the device by themselves
* If not the above, then we check if envvars have "LOCAL_RANK" and "WORLD_SIZE" from the launcher (i.e. torchrun), if so, we use "LOCAL_RANK" to set the device for the current process, which is a very standard practice. (This solves the TORCH_CUDA_VISBILE_DEVICES issue)
* If not above, then we throw warning to users about situation, and fallback to the old heuristic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150897
Approved by: https://github.com/tianyu-l
ghstack dependencies: #150898
2025-05-14 06:29:16 +00:00
Wanchao Liang
9df9d9ded0 [device_mesh] replace dim_group_info with group_name (#150898)
as titled, there's no need to maintain a dim_group_info anymore, we can
simply maintain a list of group_name instead. This will simplify the
logic

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150898
Approved by: https://github.com/tianyu-l, https://github.com/fegin
2025-05-13 17:16:45 +00:00
Iris Z
2544afaa1a [DeviceMesh] Add some documentation for from_group API and add a 2D test (#146364)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146364
Approved by: https://github.com/fduwjj
2025-03-01 00:57:37 +00:00
Xuehai Pan
995df34b19 [BE][PYFMT] migrate PYFMT for torch.{distributed,distributions} to ruff format (#144547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144547
Approved by: https://github.com/kwen2501
2025-02-28 07:35:56 +00:00
Aaron Orenstein
00ffeca1b1 PEP585 update - torch/distributed (#145164)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145164
Approved by: https://github.com/bobrenjc93
2025-01-21 04:23:29 +00:00
PyTorch MergeBot
6374332d33 Revert "PEP585 update - torch/distributed (#145164)"
This reverts commit 6cb186e279.

Reverted https://github.com/pytorch/pytorch/pull/145164 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing an inductor test ([comment](https://github.com/pytorch/pytorch/pull/145164#issuecomment-2602875679))
2025-01-20 16:46:46 +00:00
Aaron Orenstein
6cb186e279 PEP585 update - torch/distributed (#145164)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145164
Approved by: https://github.com/bobrenjc93
2025-01-20 00:19:01 +00:00
bobrenjc93
08be9ec312 Migrate from Tuple -> tuple in torch/distributed (#144258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144258
Approved by: https://github.com/aorenste
2025-01-10 08:34:54 +00:00
lzhang2
b7ad52abb0 Use new group instead of split group on non-CUDA device (#141469)
Motivation:

Currently, `split_group` only works for NCCL backend. https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py#L4745. Then we need to use `use_group` on other non-CUDA device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141469
Approved by: https://github.com/kwen2501, https://github.com/gujinghui, https://github.com/albanD
2024-12-13 05:11:33 +00:00
Chien-Chin Huang
daa27fe59d [DeviceMesh] Call no_dispatch before doing tensor slicing in DeviceMesh (#142287)
Summary:
DeviceMesh's tensor operation is a control plane operation not data plane and should not be affected by FakeTensorMode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142287
Approved by: https://github.com/XilunWu
2024-12-10 06:33:01 +00:00
SCh-zx
c8c669ce74 When using a third-party device to test DeviceMesh,the error check for 'test_raises_invalid_device_type' can only prints 'GPU' (#142038)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142038
Approved by: https://github.com/kwen2501
2024-12-06 11:14:00 +00:00
Xilun Wu
7964bcc3dc [DeviceMesh] fix sub mesh size calculation in create_sub_mesh() (#138945)
**Summary**
This PR fixes a calculation miss in DeviceMesh's create_sub_mesh().

**Error Description**
When users call `device_mesh["dim0", "dim1", "dim2", "dim3"]`, it creates a slice of mesh or we call it "submesh". Users can also slice a submesh from a flattened mesh. For example:
```
flattened_mesh = device_mesh["dim0", "dim1", "dim2"]._flatten("dim0-2")
alias_flattened_mesh = device_mesh["dim0-2"]  # this mesh slice leads to error in current impl
```

It triggers the error in the size calculation `reduce(lambda, mesh_dim)` happening in `create_sub_mesh`:
```
IndexError: Dimension out of range (expected to be in range of [-4, 3], but got 4)
```

**Fix**
The usage of lambda is wrong, for `lambda x, y`, the x is the accumulated value while `y` is the iterator value.

**Test**
`pytest test/distributed/test_device_mesh.py -s -k test_flatten_mesh_4d`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138945
Approved by: https://github.com/wz337
2024-10-29 17:56:56 +00:00
wz337
d7e0e1dbc4 [DeviceMesh] Use split_group to create sub_groups for nccl backend if the default pg is eagerly initialized (#138129)
Use `split_group()` to create sub_groups for nccl backend if the default pg is eagerly initialized. Otherwise, it will still go through the normal lazy init process and call `new_group()` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138129
Approved by: https://github.com/kwen2501
2024-10-22 00:00:05 +00:00
wz337
fb0da32377 [DeviceMesh] Small refactor to optimize DeviceMesh subgroup creation (#138117)
As `backend`, `pg_options`, and `group_desc` are the same for each mesh dimension, we don't need to get or create these args for `new_group` multiple times. This PR moves it from the inner loop of the subgroup creation (each subgroup ranks of each mesh dimension) to the outer loop (each mesh_dimension).

For example, given we have a 2 * 4 DeviceMesh, we are re-creating the variables `backend`, `pg_options`, and `group_desc` 2*4 = 8 times. After the change, we only create these variables once per mesh dimension, which is 2 times.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138117
Approved by: https://github.com/kwen2501
2024-10-21 03:04:24 +00:00
Andrew Gu
39c5048549 [DeviceMesh] Fixed from_group when passing tensor mesh (#137713)
This fixes https://github.com/pytorch/pytorch/issues/137676. (sorry for messing this up in the original PR 😓 )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137713
Approved by: https://github.com/wz337
2024-10-11 14:53:51 +00:00
wz337
93dcb92bae [DeviceMesh][EZ] Add group description to new group (#136558)
Add group description to new_group in device_mesh to help with debuggability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136558
Approved by: https://github.com/kwen2501, https://github.com/fduwjj
2024-09-28 03:09:41 +00:00
fduwjj
a0c7029a75 [c10d][Reland] Remove Option for ProcessGroup and Expose backend Options to reflect the correct code structure (#132931) (#135653)
We introduced the dispatchable backend for a ProcessGroup and collective in https://github.com/pytorch/pytorch/issues/86225. This PR is a follow-up cleanup to clean up the option of a ProcessGroup and ask users to either set timeout or backend later on or directly create backend after creating a PG.

Also PGNCCL is using option class from ProcessGroup but we actually should use Option from backend class. So this PR is to make the type or name to be aligned with what we are doing in cpp side. I don't change the signature for the public API, so they still use args named "pg_options"

We need to make changes to the test to make it aligned with the change.

This is try to reland D62008954 by fixing internal errors.

Differential Revision: [D62483294](https://our.internmc.facebook.com/intern/diff/D62483294/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135653
Approved by: https://github.com/wz337, https://github.com/H-Huang
2024-09-16 19:56:42 +00:00
wz337
67f98a99a4 [DeviceMesh][Easy] Make RuntimeError a bit more descriptive by including the actual world_size (#135271)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135271
Approved by: https://github.com/fduwjj
2024-09-06 06:23:20 +00:00
PyTorch MergeBot
351ba3e67c Revert "[c10d] Remove Option for ProcessGroup and Expose backend Options to reflect the correct code structure (#132931)"
This reverts commit 65864d0134.

Reverted https://github.com/pytorch/pytorch/pull/132931 on behalf of https://github.com/ZainRizvi due to This PR is breaking builds internally due to the removal of ProcessGroup::Options ([comment](https://github.com/pytorch/pytorch/pull/132931#issuecomment-2321862402))
2024-08-30 16:27:40 +00:00
fduwjj
65864d0134 [c10d] Remove Option for ProcessGroup and Expose backend Options to reflect the correct code structure (#132931)
We introduced the dispatchable backend for a ProcessGroup and collective in https://github.com/pytorch/pytorch/issues/86225. This PR is a follow-up cleanup to clean up the option of a ProcessGroup and ask users to either set timeout or backend later on or directly create backend after creating a PG.

Also PGNCCL is using option class from ProcessGroup but we actually should use Option from backend class. So this PR is to make the type or name to be aligned with what we are doing in cpp side. I don't change the signature for the public API, so they still use args named "pg_options"

We need to make changes to the test to make it aligned with the change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132931
Approved by: https://github.com/H-Huang
2024-08-29 22:40:12 +00:00
wz337
761cf91e3c [DeviceMesh] Add get_all_submeshes in _MeshEnv (#134275)
Adding a private helper method for Shampoo HSDP use cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134275
Approved by: https://github.com/XilunWu
2024-08-27 14:51:19 +00:00
wz337
268092db83 [DeviceMesh] Allow _flatten() to take in an optional mesh_dim_name (#134048)
If a mesh_dim_name is given, we will use the given mesh_dim_name to name the new flattened dim.
Otherwise, the default is a string concatentaing the mesh_dim_names of the given submesh with each mesh_dim_name separated by "_".

For example, if we have a 3D mesh DeviceMesh([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], mesh_dim_names=("dp", "cp", "tp")), calling mesh_3d["dp", "cp"]._flatten() will create a 1D submesh DeviceMesh([0, 1, 2, 3], mesh_dim_names=("dp_cp",)) on rank 0, 1, 2, 3 and a 1D submesh DeviceMesh([4, 5, 6, 7], mesh_dim_names=("dp_cp",)) on rank 4, 5, 6, 7.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134048
Approved by: https://github.com/fegin
ghstack dependencies: #133838, #133839
2024-08-25 10:36:01 +00:00
wz337
5d39b14b68 [DeviceMesh] Add DeviceMesh slicing support for flatten mesh dim (#133839)
Add DeviceMesh slicing support such that we could do the following:
```
mesh_3d = init_device_mesh(
    self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
# we can get the corresponding group of the flatten mesh through

group = shard_cp_mesh.get_group()
# or
group = mesh_3d["shard_cp"].get_group()
# or
mesh_3d.get_group(mesh_dim="shard_cp")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133839
Approved by: https://github.com/fegin
ghstack dependencies: #133838
2024-08-24 03:49:29 +00:00
wz337
49430bfd5c [DeviceMesh] Add a _MeshEnv attr to record the mapping of flatten mesh_dim_name to its mesh dim index in root mesh (#133838)
```
# supposed we have a 3d mesh
mesh_3d = init_device_mesh("cuda", (2,2,2), mesh_dim_names=("dp", "cp", "tp")
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()

"""
then we would have
flatten_name_to_root_dims[mesh_3d]: {
    "dp_cp": (0, 1)
}
"""
```

We need this information to validate the order mesh slice including flatten mesh dim.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133838
Approved by: https://github.com/fegin
2024-08-20 19:43:45 +00:00
wz337
4bae7ae3d9 [DeviceMesh][Easy] Fix typo (#133790)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133790
Approved by: https://github.com/Skylion007
2024-08-19 05:20:22 +00:00
wz337
3fc9ee5a31 [DeviceMesh] Directly retrieve flattened mesh if already created (#133195)
Add mapping to keep track of root_to_flatten relationship and directly retrieve the flattened mesh if already created (no pg creation).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133195
Approved by: https://github.com/fegin, https://github.com/wanchaol
ghstack dependencies: #133193
2024-08-14 21:11:04 +00:00
wz337
ef580a0e5c [DeviceMesh] Restrict slicing to be a contiguous or non-contiguous subsequence of the root mesh_dim_names (#133193)
This PR adds restriction for DeviceMesh slicing. No out-of-order subsequence slicing is allowed. To create a flatten mesh_dim_names, only the in-order slicing is allowed.

```
mesh_3d = init_device_mesh(
    self.device_type, (2,2,2), mesh_dim_names=("dp", "cp", "tp"),
)

# valid 2d slicing
mesh_2d = mesh_3d["dp", "cp"]
mesh_2d = mesh_3d["dp", "tp"]
mesh_2d = mesh_3d["cp", "tp"]

# invalid 2d slicing
mesh_2d = mesh_3d["cp", "dp"]
mesh_2d = mesh_3d["tp", "cp"]
mesh_2d = mesh_3d["tp", "dp"]

# valid way to create dp_cp flatten slice
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
# invalid way to create dp_cp flatten slice
dp_cp_mesh = mesh_3d["cp", "dp"]._flatten()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133193
Approved by: https://github.com/fegin, https://github.com/wanchaol
2024-08-14 07:18:41 +00:00
wz337
479d460471 [DeviceMesh] Add a private _flatten() API for device_mesh (#132632)
Adds a new private API to flatten a DeviceMesh to a 1D DeviceMesh such that:
```
mesh_3d = init_device_mesh(
    self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp"),
)

dp_cp_mesh = mesh_3d["dp", "cp"]
# flattened_mesh on rank 0, 2, 4, 6 is DeviceMesh([0, 2, 4, 6], mesh_dim_names=('dp_cp',))
# flattened_mesh on rank 1, 3, 5, 7 is DeviceMesh([1, 3, 5, 7], mesh_dim_names=('dp_cp',))
flattened_dp_cp_mesh = dp_cp_mesh._flatten()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132632
Approved by: https://github.com/fegin, https://github.com/wanchaol
ghstack dependencies: #132310, #132311, #132339
2024-08-08 06:46:42 +00:00
wz337
8b50d5398f [DeviceMesh] Create new group for 1D mesh when default backend is 'gloo' and 'cuda' is available (#132709)
More context in [#132471](https://github.com/pytorch/pytorch/issues/132471) and https://github.com/pytorch/pytorch/issues/132366.

TLDR:
When cuda is available and users move tensors to cuda, we cannot really reuse the default pg if default pg is gloo, as lots of collectives are not supported on gloo for cuda tensors. For example, `dtensor.full_tensor()` would result in a mysterious SIGTERM when all_gather a cuda tensor using gloo. Without the change in this PR, users would have to know the context and explicitly move the cuda tensor to cpu before invoking most collectives, which I think is not so ideal UX.

Therefore, given most collectives are not supported on gloo for cuda tensors, we should init a new pg if the default pg is gloo when torch.cuda.is_available() and device_type is cuda.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132709
Approved by: https://github.com/awgu, https://github.com/wanchaol
2024-08-07 16:13:11 +00:00
wz337
87053132ea [DeviceMesh] Remove parent mesh concept from _MeshEnv and replace by root mesh (#132339)
Previously, when we slice out a submesh from a mesh, we assign the mesh as the parent mesh of the submesh. In this case, when we have a 3D mesh topology, the parent mesh of a 1D mesh sliced out from the 3D mesh is different from the parent mesh of the same 1D mesh sliced out from the 2D submesh of the 3D mesh. For example:
```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]

mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 =  mesh_2d["dim0_2"]

# This would evaluate to be True
print(_mesh_resources.get_parent_mesh(mesh_dim0) != _mesh_resources.get_parent_mesh(mesh_dim0))
```

We can always reconstruct the mesh needed from the mesh dim names, as long as two dims come from the same root. For simplicity, we do not see the necessity of building a tree structure to represent child-parent relationship. Therefore, we are replacing the parent mesh concept with a root mesh concept in `_MeshEnv` so we would have:

```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]

mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 =  mesh_2d["dim0_2"]

# This would evaluate to be True
print(_mesh_resources.get_root_mesh(mesh_dim0) == _mesh_resources.get_root_mesh(mesh_dim0))
```
With this change, we will have two types of meshes in an environment.
1. `device_mesh != _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is created by slicing.
2. `device_mesh == _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is a root mesh not created through slicing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132339
Approved by: https://github.com/wanchaol
ghstack dependencies: #132310, #132311
2024-08-07 07:01:12 +00:00
PyTorch MergeBot
c7113a6186 Revert "[DeviceMesh] Create new group for 1D mesh when default backend is 'gloo' and 'cuda' is available (#132709)"
This reverts commit 1a23ef2ece.

Reverted https://github.com/pytorch/pytorch/pull/132709 on behalf of https://github.com/clee2000 due to I think this broke distributed/test_distributed_spawn.py::TestDistBackendWithSpawn::test_ddp_device_mesh_initialization [GH job link](https://github.com/pytorch/pytorch/actions/runs/10274519791/job/28432469987) [HUD commit link](1a23ef2ece).  Test not run due to bad TD ([comment](https://github.com/pytorch/pytorch/pull/132709#issuecomment-2272350923))
2024-08-06 23:47:53 +00:00
wz337
1a23ef2ece [DeviceMesh] Create new group for 1D mesh when default backend is 'gloo' and 'cuda' is available (#132709)
More context in [#132471](https://github.com/pytorch/pytorch/issues/132471) and https://github.com/pytorch/pytorch/issues/132366.

TLDR:
When cuda is available and users move tensors to cuda, we cannot really reuse the default pg if default pg is gloo, as lots of collectives are not supported on gloo for cuda tensors. For example, `dtensor.full_tensor()` would result in a mysterious SIGTERM when all_gather a cuda tensor using gloo. Without the change in this PR, users would have to know the context and explicitly move the cuda tensor to cpu before invoking most collectives, which I think is not so ideal UX.

Therefore, given most collectives are not supported on gloo for cuda tensors, we should init a new pg if the default pg is gloo when torch.cuda.is_available() and device_type is cuda.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132709
Approved by: https://github.com/awgu, https://github.com/wanchaol
2024-08-06 22:00:09 +00:00
Brian Hirsh
e6eee04875 dynamo: use equality guards instead of id guards for Placement/DeviceMesh (#124401)
After talking to @anijain2305, we probably can't land this since it won't work for C++ guards. But we should still be able to do better than ID_MATCH

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124401
Approved by: https://github.com/anijain2305
2024-08-06 17:14:44 +00:00
wz337
4306eebab1 [DeviceMesh] Update slicing documentation to include nD and non-continuous slicing (#132311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132311
Approved by: https://github.com/wanchaol
ghstack dependencies: #132310
2024-08-05 23:44:23 +00:00
wz337
fb87796d4f [DeviceMesh] Add supports for non-continuous slicing (#132310)
Removes constraint of continuous slicing to allow non-continuous slicing and adds a unit test for 3D non-continuous slicing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132310
Approved by: https://github.com/wanchaol
2024-08-05 09:30:07 +00:00
wz337
4de85e3c30 [DeviceMesh] Remove _parent_mesh as an attribute from DeviceMesh and remove it from DeviceMesh's hash (#131636)
We recently revisited the hash implementation and think `_parent_mesh` information should not be burned into DeviceMesh but rather be inferred from the MeshEnv which manages device meshes.

As `mesh_dim_names` is considered in device mesh's hash. This should not affect the issue brought up in https://github.com/pytorch/pytorch/issues/121799

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131636
Approved by: https://github.com/wanchaol
2024-07-25 22:47:22 +00:00
Iris Zhang (PyTorch)
ee6f0ab190 [DeviceMesh][Reland] Only include the real thread_id in DeviceMesh hash under threaded backend (#130495) (#130685)
Summary:
As a followup to https://github.com/pytorch/pytorch/pull/130454, users are hitting the cross-mesh operation error because the DeviceMesh thread ID differs between the saved vs. loaded DTensor due to thread id being different.

This is a hot fix to only consider the real thread_id in DeviceMesh hash under threaded backend, but set it to None for all other cases.

As a follow up, we need to look at the following test failures to better root cause specific DeviceMesh related failures related to MTPG, if thread_id is not included as part of the hash.
```
test/distributed/_composable/fsdp/test_fully_shard_training.py::TestFullyShardRegisteredParams::test_param_registration_after_forward
test/distributed/_tensor/test_dtensor_ops.py::TestDTensorOpsCPU::test_dtensor_op_db_column_stack_cpu_float32
```

Adding an additional is_initialized() check since APF has a test mocking the backend without pg initialized. Therefore, we need to add the is_initialized() check to avoid test failure. In real use case, we should have a pg initialized before the get_backend() check. Not sure if we want to add this specifically for the test, but temporarily adding it to unblock APF conveyor runs.

Test Plan:
```
[irisz@devgpu051.cln3 /data/users/irisz/fbsource/fbcode (38e4a0a3b)]$ buck2 test 'fbcode//mode/opt' fbcode//apf/distributed/tests:pipeline_parallel_test_cpu -- --exact 'apf/distributed/tests:pipeline_parallel_test_cpu - apf.distributed.tests.pipeline_parallel_test_cpu.PipelineParallelContextTestCPU: test_stage_pg_creation_with_different_backends'
```

Reviewed By: gag1jain

Differential Revision: D59725924

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130685
Approved by: https://github.com/gag1jain
2024-07-15 20:05:26 +00:00
Gagan Jain
97cfc65dbc Back out "[DeviceMesh] Only include the real thread_id in DeviceMesh hash under threaded backend (#130495)" (#130676)
Summary:
Original commit changeset: 80c2ca639146

Original Phabricator Diff: D59612200

Test Plan: buck2 test 'fbcode//mode/opt' fbcode//apf/distributed/tests:pipeline_parallel_test_cpu -- --exact 'apf/distributed/tests:pipeline_parallel_test_cpu - apf.distributed.tests.pipeline_parallel_test_cpu.PipelineParallelContextTestCPU: test_stage_pg_creation_with_different_backends'

Differential Revision: D59719562

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130676
Approved by: https://github.com/xunnanxu
2024-07-13 23:19:22 +00:00
wz337
3896ba3260 [DeviceMesh] Only include the real thread_id in DeviceMesh hash under threaded backend (#130495)
Fixes #ISSUE_NUMBER

As a followup to https://github.com/pytorch/pytorch/pull/130454, users are hitting the cross-mesh operation error because the DeviceMesh thread ID differs between the saved vs. loaded DTensor due to thread id being different.

This is a hot fix to only consider the real thread_id in DeviceMesh hash under threaded backend, but set it to None for all other cases.

As a follow up, we need to look at the following test failures to better root cause specific DeviceMesh related failures related to MTPG, if thread_id is not included as part of the hash.
```
test/distributed/_composable/fsdp/test_fully_shard_training.py::TestFullyShardRegisteredParams::test_param_registration_after_forward
test/distributed/_tensor/test_dtensor_ops.py::TestDTensorOpsCPU::test_dtensor_op_db_column_stack_cpu_float32
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130495
Approved by: https://github.com/awgu, https://github.com/wanchaol
2024-07-11 17:02:18 +00:00
Zaida Zhou
bc8883a7c4 fix the error msg in device_mesh (#129747)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129747
Approved by: https://github.com/awgu, https://github.com/wconstab
2024-06-28 20:12:09 +00:00
Xuehai Pan
94dc3253a0 [BE][Easy] enable UFMT for torch/distributed/ (#128870)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128870
Approved by: https://github.com/fegin, https://github.com/wconstab
2024-06-22 18:53:28 +00:00
PyTorch MergeBot
9c929f6ce9 Revert "[BE][Easy] enable UFMT for torch/distributed/ (#128870)"
This reverts commit a0e1e20c41.

Reverted https://github.com/pytorch/pytorch/pull/128870 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/128870#issuecomment-2181780356))
2024-06-21 00:38:28 +00:00
Xuehai Pan
a0e1e20c41 [BE][Easy] enable UFMT for torch/distributed/ (#128870)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128870
Approved by: https://github.com/fegin
ghstack dependencies: #128868, #128869
2024-06-18 21:49:08 +00:00
Aaron Orenstein
3a0d088517 Flip default value for mypy disallow_untyped_defs [5/11] (#127842)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127842
Approved by: https://github.com/oulgen
2024-06-08 18:49:18 +00:00
Iris Z
1d84c7e100 [DeviceMesh] Update get_group and add get_all_groups (#128097)
Fixes #121984

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128097
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2024-06-08 04:28:56 +00:00
Yifu Wang
1d0c1087dd Allow overriding per-dim group options via _MeshEnv.set_dim_group_options (#126599)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126599
Approved by: https://github.com/wanchaol
ghstack dependencies: #126598
2024-06-06 17:18:12 +00:00
Will Constable
22368eac10 [FSDP2] Fix submesh slicing to enable 3D parallelism (#127585)
Ensures the submesh used to create sharded parameters are created on a
submesh that excludes the Pipeline Parallelism dimension.

Also cleans up the logic for storing placements to no longer consider the outer / global dims.  Since we store an 'spmd' submesh, we can avoid this.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127585
Approved by: https://github.com/wanchaol
2024-06-04 04:24:09 +00:00
Iris Z
1699edaabb [DeviceMesh] Adding nD slicing support back (#127465)
Fixes #126530

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127465
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2024-05-31 17:06:36 +00:00
PyTorch MergeBot
f6e303fa47 Revert "[DeviceMesh] Adding nD slicing support back (#127465)"
This reverts commit e72232f8f0.

Reverted https://github.com/pytorch/pytorch/pull/127465 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing lint e72232f8f0, the error does not like look trivial fix, so I revert the change for a forward fix ([comment](https://github.com/pytorch/pytorch/pull/127465#issuecomment-2141051630))
2024-05-31 00:43:13 +00:00
wz337
e72232f8f0 [DeviceMesh] Adding nD slicing support back (#127465)
Fixes #126530

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127465
Approved by: https://github.com/wconstab
2024-05-30 23:55:21 +00:00
Aaron Gokaslan
3cb16ebf08 [BE]: Update ruff to 0.4.5 (#126979)
Update ruff to 0.4.5 and addresses some false negatives that have been found in the newer version.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126979
Approved by: https://github.com/ezyang
2024-05-24 18:38:35 +00:00
Andrew Gu
697ed6f5b3 [DeviceMesh] Supported N groups in from_group (#126258)
**Overview**
This PR supports constructing an ND mesh with `from_group()` by passing in `group: List[ProcessGroup]` and `mesh: Union[torch.Tensor, "ArrayLike"]` together. The `ndim` of the device mesh returned from `from_group()` is equal to the number of `ProcessGroup`s passed. If the `ndim` is greater than 1, then the `mesh` argument is required (since there is no simple way to recover the `mesh` tensor from the process groups otherwise).

This PR also adds `mesh_dim_names` as an argument to forward to the device mesh for convenience.

<details>
<summary> Old Approach </summary>

**Overview**
- This PR mainly adds `mesh_shape` to `from_group()` so that the user can construct an ND (N > 1) device mesh from a process group. This is to unblock HSDP, where we can pass the overall data parallel process group to `from_group()` with `mesh_shape = (replicate_dim_size, shard_dim_size)` and `from_group()` will construct subgroups for the user. (The user can then get the subgroups from the submeshes.)
    - Constructing the 2D `DeviceMesh` from an existing shard process group and replicate process group is hard because we cannot easily recover the array of ranks in their parent group on each rank in general.
- This PR also adds `mesh_dim_names` to `from_group()` so that the user can name the mesh dimensions of the constructed device mesh.

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126258
Approved by: https://github.com/wanchaol
2024-05-17 01:03:21 +00:00
wz337
059b68fbdf [DeviceMesh] Fix hash and eq not match (#123572)
Fixes #121799

We fix DeviceMesh hash such that two mesh are considered equal if they have the same mesh and same parent_mesh.
Examples can be found here: https://github.com/pytorch/pytorch/issues/121799

Also need this to unblock https://github.com/pytorch/pytorch/pull/123394

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123572
Approved by: https://github.com/xunnanxu, https://github.com/wanchaol, https://github.com/yoyoyocmu
2024-05-16 02:00:45 +00:00
Yuanhao Ji
e0d2c24de1 Fix device type issue in _get_device_handle (#124390)
Fix #124327

`device_type`, the first arg of [init_device_mesh()](a0466061e1/torch/distributed/device_mesh.py (L503)),  does not support types with indexes, such as `cuda:0`.
If `cuda:0` is used as a parameter, `_get_device_handle()` will not correctly return `torch.cuda`.
So the exception should be thrown before creating DeviceMesh object.

> See https://github.com/pytorch/pytorch/issues/124327#issuecomment-2062551161,

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124390
Approved by: https://github.com/wz337, https://github.com/wanchaol
2024-04-30 06:59:56 +00:00
Iris Zhang (PyTorch)
4ad291d07f [DeviceMesh] Removing mapping child_to_parent_mapping from _MeshEnv (#124890)
Summary: The mapping is no longer needed after https://github.com/pytorch/pytorch/pull/124780, as we are not going to re-create the pgs during mesh slicing.

Test Plan: CI

Differential Revision: D56499001

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124890
Approved by: https://github.com/awgu
2024-04-26 06:40:36 +00:00
Iris Zhang (PyTorch)
43f4e71daa Making _MeshEnv subclassing thread local (#124555)
With _mesh_resources being global var, when thread pg based testing is used (aka spawn_threads_and_init_comms()), the last rank with the same key would overwrite the formers. This isn't an issue in regular process-based runtime as logically each key is unique.

Example failure: https://github.com/pytorch/pytorch/actions/runs/8779134353/job/24087295785
```
RuntimeError: Could not resolve the process group registered under the name 8
or
Throwing assert not none error
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124555
Approved by: https://github.com/xunnanxu, https://github.com/wanchaol
2024-04-26 02:45:42 +00:00
Andrew Gu
36c983a973 [DeviceMesh] Added DeviceMesh.from_group() (#124787)
This PR adds a `DeviceMesh.from_group()` static method to convert an existing process group to a device mesh.

Motivation: We need `DeviceMesh.from_group()` to allow FSDP2 to interoperate with distributed libraries that do not use `DeviceMesh` for all parallelisms.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124787
Approved by: https://github.com/wanchaol
ghstack dependencies: #124651, #124741, #124767, #124768, #124780
2024-04-24 23:16:06 +00:00
Andrew Gu
48312a7fc3 [DeviceMesh] Removed unneeded .to(cpu) (#124768)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124768
Approved by: https://github.com/wz337
ghstack dependencies: #124651, #124741, #124767
2024-04-24 18:07:20 +00:00
Andrew Gu
1db7d64af2 [DeviceMesh] Initialized mesh tensor with CPU context (#124767)
This PR makes sure to construct the `DeviceMesh`'s `mesh` tensor on CPU device in `init_device_mesh()`. This means that we can call `init_device_mesh()` under meta-device context and still construct the correct `mesh` tensor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124767
Approved by: https://github.com/wz337
ghstack dependencies: #124651, #124741
2024-04-24 18:04:06 +00:00
Wanchao Liang
0da94f3a08 [device_mesh] add a private init backend option (#124780)
This PR adds a private init backend option, to tackle the issues sub
mesh creation:

in device mesh slicing we don't want to create process groups again,
so explicitly turn the group creation off it's useful

Also I think there might be more submesh creation functionality so
having this flag would ensure that there's no new group created

Differential Revision: [D56497780](https://our.internmc.facebook.com/intern/diff/D56497780)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124780
Approved by: https://github.com/awgu
2024-04-24 04:31:58 +00:00
wz337
37fd547518 [DeviceMesh] Make dtype of mesh tensor from init_device_mesh() consistent with directly calling DeviceMesh() (#123677)
Currently, mesh tensor from `init_device_mesh()` has a dtype of `torch.int64` while mesh tensor from `DeviceMesh()` would have dtype of `torch.int32`. Making them consistent in this PR.

DeviceMesh ctor dtype pointer:
https://github.com/pytorch/pytorch/blob/main/torch/distributed/device_mesh.py#L217

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123677
Approved by: https://github.com/xunnanxu, https://github.com/wanchaol
2024-04-10 09:14:34 +00:00
wz337
2b1ba0ceae [DeviceMesh] Cache and reuse sliced result (#122975)
Fixes #118849

Add a map for parent_to_child_mappings in _mesh_resources so we can cache and reuse submesh slicing result so that we can avoid recreating submesh and the underlying sub pg repeatedly, which could lead to funky behaviors.

We will follow up with reusing pg from the parent_mesh during submesh creation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122975
Approved by: https://github.com/wanchaol
2024-03-30 23:56:55 +00:00
Iris Zhang (PyTorch)
e99fa0042c Back out "[DeviceMesh] Add support for nD slicing (#119752)" (#121763)
Summary:
Original commit changeset: e52b8809c8d8

Original Phabricator Diff: D54778906

We have to backout this diff.
D54778906 seems to be causing test failures for APF blocking trunk health and hence release. Just starting to look at the issue. T182209248

Test Plan: Sandcastle

Reviewed By: satgera

Differential Revision: D54825114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121763
Approved by: https://github.com/osalpekar
2024-03-13 07:22:08 +00:00
wz337
60cd2a43ca [DeviceMesh] Add support for nD slicing (#119752)
Fixes one of the issue mentioned in #118639
@mvpatel2000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119752
Approved by: https://github.com/wanchaol
2024-03-10 00:16:37 +00:00
wz337
5603d95375 [DeviceMesh] Ensure mesh tensor is a cpu tensor (#120046)
More discussion in the last comment in https://github.com/pytorch/pytorch/pull/118614

In general, users won't pass a cuda tensor to DeviceMesh, as the mesh tensor is just a way to construct a mesh that doesn't require cuda compute. Taking suggestion from @awgu to enforce the tensor to be cpu tensor if it is not already so that we can prevent a device sync.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120046
Approved by: https://github.com/wanchaol, https://github.com/wconstab
2024-02-22 22:03:13 +00:00
Iris Zhang (PyTorch)
0245000be8 [DeviceMesh] Temporarily disable re-use subgroup (#118940)
Summary:
The reuse subgroup logic is causing GLOO to timeout on two internal modelstore tests (relevant tests in test plan).
We temporarily disabling re-use subgroup during root-causing to allow the internal tests to be able to run again, as they are now omitted shown in T176426987.

Test Plan:
CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118940
Approved by: https://github.com/wanchaol
2024-02-05 06:30:00 +00:00
wz337
c908caf92b [DeviceMesh] Alllow 1d slice from 1d mesh (#118895)
Fixes [ISSUE_NUMBER](https://github.com/pytorch/pytorch/issues/118851)

i.e.
mesh = init_device_mesh("cuda", (8,), mesh_dim_names=("dp"))
then we do dp_mesh = mesh["dp"] should still work, just dummy return without recording parent mesh

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118895
Approved by: https://github.com/wanchaol
2024-02-02 22:00:24 +00:00
Yifu Wang
697ca4f292 Preliminary DeviceMesh + native c10d functional integration (#118423)
### Summary
- Added `group_name` as the third field in `dim_group_infos`.
- `DeviceMeshTest` now runs both w/ and w/0 `_USE_NATIVE_C10D_FUNCTIONAL=1` in CI.

### Other fixes
- Convert `reduceOp` to lower case before passing it into c10d_functional ops.
- Added a finalizer to handle unwaited collectives (this mirrors the treatment for Python functional collective ops).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118423
Approved by: https://github.com/wanchaol, https://github.com/LucasLLC, https://github.com/wconstab
2024-01-31 04:36:12 +00:00
Catherine Lee
4f5785b6b3 Enable possibly-undefined error code (#118533)
Fixes https://github.com/pytorch/pytorch/issues/118129

Suppressions automatically added with

```
import re

with open("error_file.txt", "r") as f:
    errors = f.readlines()

error_lines = {}
for error in errors:
    match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
    if match:
        file_path, line_number, error_type = match.groups()
        if file_path not in error_lines:
            error_lines[file_path] = {}
        error_lines[file_path][int(line_number)] = error_type

for file_path, lines in error_lines.items():
    with open(file_path, "r") as f:
        code = f.readlines()
    for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
        code[line_number - 1] = code[line_number - 1].rstrip() + f"  # type: ignore[{error_type}]\n"
    with open(file_path, "w") as f:
        f.writelines(code)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Co-authored-by: Catherine Lee <csl@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
2024-01-30 21:07:01 +00:00
PyTorch MergeBot
40ece2e579 Revert "Enable possibly-undefined error code (#118533)"
This reverts commit 4f13f69a45.

Reverted https://github.com/pytorch/pytorch/pull/118533 on behalf of https://github.com/clee2000 due to sorry i'm trying to figure out a codev merge conflict, if this works i'll be back to rebase and merge ([comment](https://github.com/pytorch/pytorch/pull/118533#issuecomment-1917695185))
2024-01-30 19:00:34 +00:00
Edward Z. Yang
4f13f69a45 Enable possibly-undefined error code (#118533)
Fixes https://github.com/pytorch/pytorch/issues/118129

Suppressions automatically added with

```
import re

with open("error_file.txt", "r") as f:
    errors = f.readlines()

error_lines = {}
for error in errors:
    match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
    if match:
        file_path, line_number, error_type = match.groups()
        if file_path not in error_lines:
            error_lines[file_path] = {}
        error_lines[file_path][int(line_number)] = error_type

for file_path, lines in error_lines.items():
    with open(file_path, "r") as f:
        code = f.readlines()
    for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
        code[line_number - 1] = code[line_number - 1].rstrip() + f"  # type: ignore[{error_type}]\n"
    with open(file_path, "w") as f:
        f.writelines(code)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
2024-01-30 05:08:10 +00:00
Andrew Gu
68b18dc2a2 [DeviceMesh] Removed print of self._dim_group_infos (#118527)
This print seems to have accidentally been merged in. It is a bit verbose during unit tests, so this PR removes it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118527
Approved by: https://github.com/wz337
2024-01-29 19:14:25 +00:00
wz337
e1f9eca113 [DeviceMesh] Reuse sub_group pg if exists (#115716)
Currently, we create new_group for sub_group pg during mesh initialization. The PR changes this so we will:
1) re-use sub_group pg if it exsits,
2) create new sub_group pg if it does not exist.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115716
Approved by: https://github.com/wanchaol
2024-01-25 18:07:16 +00:00
Carlos Mocholí
a31effa15f Update device_mesh.py docs imports (#116074)
These are not importable from `torch.distributed`, at least today.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116074
Approved by: https://github.com/wz337, https://github.com/fegin
2023-12-19 09:44:55 +00:00
wz337
b48abbc020 [DeviceMesh] Fix DeviceMesh docstring (#116053)
1. remove outdated comments
2. fix examples in docstring

Doc after fix:
<img width="706" alt="image" src="https://github.com/pytorch/pytorch/assets/31293777/19f4f03c-0fd7-4e88-bca1-1a6ce693fbb7">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116053
Approved by: https://github.com/wanchaol
2023-12-19 04:05:49 +00:00
Iris Z
1eca63c6ac [DeviceMesh] Move helper function 'get_mesh_dim_by_name' to MeshEnv class (#115572)
Move helper function `get_mesh_dim_by_name ` outside of the DeviceMesh class to keep the public class cleaner.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115572
Approved by: https://github.com/XilunWu, https://github.com/wanchaol
2023-12-12 06:29:46 +00:00
wz337
c70f995b5c [DeviceMesh] Add mesh_dim_names to DeviceMesh __repr__ if it exists (#115579)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115579
Approved by: https://github.com/wanchaol
2023-12-12 02:18:34 +00:00
Chip Turner
937d616e82 Re-enable type checking for distributed_c10d.py (#115223)
Re-enable type checking for distributed_c10d.py

Type checking for distributed_c10d.py was inadvertently turned off in issues that have accumulated since.

Note: the backwards compatibility linter does not like some of these changes.  But they were incorrect before.  This needs human verification, however.

#suppress-api-compatibility-check

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115223
Approved by: https://github.com/wconstab
2023-12-09 11:07:54 +00:00
Iris Zhang (PyTorch)
23fa9621e4 [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099) (#115193)
Summary:

Rename _device_mesh.py to device_mesh.py, update all callsites, add documentation.
We created stubs for public class and methods in torch.distributed.device_mesh so that torch.distributed.device_mesh can be imported with or without distributed is available().

Original diff reverted: D51629761
Original PR reverted: https://github.com/pytorch/pytorch/pull/115099
Prior to landing, CI signals are all passed. Shipit added the "ci/trunk" label to the PR and DID NOT wait for it and went ahead committing. More context can be found in the reverted PR above.

Test Plan: CI.

Differential Revision: D51861018

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115193
Approved by: https://github.com/fegin
2023-12-08 08:44:32 +00:00
Nikita Shulga
a827ac71f2 Revert "[DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099)"
This reverts commit eaa64339d6.
2023-12-05 08:59:36 -08:00
Iris Zhang (PyTorch)
eaa64339d6 [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099)
Summary:
Rename _device_mesh.py to device_mesh.py, update all callsites, adds documentation.

Original diff reverted: D51629761
Original PR reverted: https://github.com/pytorch/pytorch/pull/114991
It was failing because failing a public module binding tests in MacOS, and this is due to the change in import order for torch/distributed/fsdp/_common_utils.py. Since this original import would still work, we remove the changes in this file.

Test Plan: CI.

Differential Revision: D51825114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115099
Approved by: https://github.com/wanchaol, https://github.com/fegin
2023-12-05 05:44:52 +00:00
PyTorch MergeBot
3a2e2044cd Revert "[DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#114710) (#114991)"
This reverts commit 729ac7317a.

Reverted https://github.com/pytorch/pytorch/pull/114991 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/114991#issuecomment-1837214567))
2023-12-02 17:55:51 +00:00
Iris Zhang (PyTorch)
729ac7317a [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#114710) (#114991)
Summary:

Same content of changes as https://github.com/pytorch/pytorch/pull/114710

Rename _device_mesh.py to device_mesh.py, update all callsites, adds documentation.
ghstack-source-id: 208980207
exported-using-ghexport

Test Plan: CI.

Reviewed By: wanchaol

Differential Revision: D51629761

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114991
Approved by: https://github.com/wanchaol, https://github.com/fduwjj, https://github.com/fegin
2023-12-02 04:39:41 +00:00