Commit Graph

24 Commits

Author SHA1 Message Date
Wanchao Liang
739e6af869 Add reminder % to the jit
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11557

Reviewed By: apaszke

Differential Revision: D9784642

Pulled By: wanchaol

fbshipit-source-id: b7c60c3e9534555c9d7db83769965b3f2f277cdf
2018-09-12 12:40:38 -07:00
Richard Zou
68c2e014cb Handling for py2/py3 division differences (#11016)
Summary:
- In Python 2, use of `/` (regardless of int/float/Tensor) causes a compiler error if
  `from __future__ import division` is not imported in the file.
- The / operator is universally set to do "true" division for integers
- Added a `prim::FloorDiv` operator because it is used in loop unrolling.

The error if users use '/' in python 2 without importing from __future__
occurs when building the JIT AST.

cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11016

Differential Revision: D9613527

Pulled By: zou3519

fbshipit-source-id: 0cebf44d5b8c92e203167733692ad33c4ec9dac6
2018-09-05 14:57:38 -07:00
Richard Zou
ca567862b2 Support multidimensional indexing (#10787)
Summary:
Part of #10774.

This PR does the following:
- Support ast.ExtSlice in the frontend. This is done by returning a
  list of ast.Index and ast.Slice.
- Support multidimensional indexing with ints and slices

The general approach is to desugar multidimensional indexing into
at::slice, at::select operations. This is exactly how normal pytorch
does indexing (by desugaring it into at::slice, at::select, and other ops).

I used [this code](https://github.com/pytorch/pytorch/blob/master/torch/csrc/autograd/python_variable_indexing.cpp) as reference.
We should be able to copy the rest of this to implement the missing
indexing features in script (indexing with ellipses, tensors, sequences, etc).

After I'm done implementing the missing indexing features in future prs, I can try to
templatize python_variable_indexing.cpp so that it can work with both JIT
script and normal pytorch indexing, but right now I'm not sure if that's
a good idea or not.

cc zdevito jamesr66a apaszke wanchaol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10787

Differential Revision: D9481402

Pulled By: zou3519

fbshipit-source-id: 78c9fa42771a037d157879e23e20b87401cf1837
2018-08-24 08:10:32 -07:00
James Reed
32bb4040dd Unified type annotation parsing for script frontends (#10279)
Summary:
After this, all combinations of {String frontend, Python AST Frontend}{Python 3-style type annotations, MyPy-style type comments}{Script method, Script function} should properly accept type annotations.

Possible TODOs:
- Clean up the functions marked HACK
- Clean up the Subscript tree-view to better match the Python AST versions
- Can we use this for Python functions? That's the only place annotations.get_signature() is still needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10279

Differential Revision: D9319726

Pulled By: jamesr66a

fbshipit-source-id: b13f7d4f066b0283d4fc1421a1abb9305c3b28fa
2018-08-14 18:13:15 -07:00
Elias Ellison
170d29769b Strings lexing, parsing, implementation in print (#9324)
Summary:
This PR adds strings to the ast and implements them for print statements. Strings are lifted as attributes to the print node. They must be arguments to print itself, not as an argument for an object that is passed to print.  If they are encountered elsewhere a NYI exception will be thrown.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9324

Reviewed By: jramseyer

Differential Revision: D8807128

Pulled By: eellison

fbshipit-source-id: 984401ff458ed18d473c6d1bd86750e56c77d078
2018-08-02 11:09:03 -07:00
Michael Suo
191482fa39 Distinguish TupleLiteral from ListLiteral (#10128)
Summary:
Previously, the parser was emitting list literals for tuples, but the IR was representing list literals internally with TupleTypes.

For implementing most list operations, I think it will be helpful distinguish between lists (dynamic size, homogeneous types) and tuples (fixed arity, heterogeneous types)

This diff modifies the parser logic to emit tuple literals. This frees us to represent lists as ListType in the IR, while still properly mapping tuple literals to TupleTypes.

A following diff will actually switch over list literals to emit ListTypes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10128

Differential Revision: D9121305

Pulled By: michaelsuo

fbshipit-source-id: e0cad07ae8bac680f7f8113d10e5129d5a1a511d
2018-08-01 19:18:31 -07:00
Wanchao Liang
47c1badf90 Fix the clamp special case and gradient problem on None, add None to JIT (#9596)
Summary:
Supersedes #8925

This PR fixes #8502, it fixes the gradients problem for clamp when passing None to the function, and add support for the NoneLiteral and NoneType in script to enable clamp tests. Now we could have corner cases like:

```python
torch.jit.script
def func():
    x = torch.randn(3, 3, requires_grad=True)
    y = torch.clamp(x, None, 0) # max = 0
    y = torch.clamp(x, min=None, max=0)
```

In both JIT and Aten, we use Scalar(NAN) as a sentinel value when passing None type to function clamp, this is the current way we used to support None type in JIT and to solve the gradient problem when user explicitly passing None into clamp.

In JIT side, we create a tensor(NAN) and undefinedTensor if we encounter None when matching the function schema, and later in the interpreter, it will translate to Scalar(NAN) if needed.

Ideally we don't need clamp_min and clamp_max in ATenNative/Autograd and could only support clamp after this change, but since bunch of other operators (e.g. Activation.cpp, Loss.cpp) is using clamp_min in several places, we will still have the functions available, but all python invocations will only call clamp instead of clamp_min/max (with calling underlying th_max/th_min in clamp).

zdevito jamesr66a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9596

Reviewed By: zdevito

Differential Revision: D8940839

Pulled By: wanchaol

fbshipit-source-id: c543a867b82e0ab8c99384773b173fdde2605d28
2018-07-27 22:54:33 -07:00
Gao, Xiang
fe805794ac docstring support for @script and @script_method (#7898)
* docstring support for @script and @script_method

* make it python2 compatible

* improve according to review

* improve build_stmts

* use filter instead of list comprehension

* improve the way wrap is handled for script_method

* stash the original method instead

* allow dynamic attr for ScriptMethod and GraphExecutor

* a bit comment on build_Expr

* remove _build_wrap

* a bit improve on comments

* rename to __original_methods

* should be _original_methods
2018-06-05 10:36:08 -04:00
Chunli
ec71c689fc [JIT][script] Add matmul(@), pow(**) operator (#7648)
* add matmul(@), pow(**) operator

* fix bug(matmul not in py2) in @ operator

* fix bugs

* add get_fn help func to remove duplication in test_jit
2018-05-18 15:24:20 -07:00
Zachary DeVito
b8ada7380a
Tuple literal and cat support (#6691)
* Support list and tuple literals: Adds support for [a, b], (a, b) and "a, "

* Allow non-tensors to reach emitBuiltinCall, each SugaredValue::call
is now responsible for checking the types of its inputs.

Add support for calling cat with a tuple to emitBuiltinOp
2018-04-23 10:58:07 -07:00
Zachary DeVito
8995ddda05
[jit][script] Check that each builtin returns the right number of values. (#6492)
* Fixes to the way script handles multiple values, and other minor fixes.

This commit improves our handling of operators that return multiple values.
Builtins are now checked so that they return the right number of values,
and support for TupleValue is extended to all things that can return
multiple values.

This resolves issues where the compiler accepted things like:

  a, b = c + c

This would cause the interpreter to crash. Now each operator knows
how many results it will produce and can check it against the number
of requested inputs.

Notes:
* Allow True/False literals in constant expressions
* make handling of keyword constants more consistent to support True/False
* make parsing constants match the way we construct constants from python
* improve the error messages when accessing bad graph attributes.
* switch findTensorOp to return an optional.
* check that attribute types are correct in findTensorOp
* Check the correct number of outputs for builtins

This also changes emitExpr to return a single SugaredValue

Rather than possibly returning multiple values, emitExpr now
always returns a single value, which _might_ be a tuple. This approach
more closely follows python making the code easier to follow.

Checks for returning the right number of values are now located in
the assignment operator, and occur when unpacking the tuple.

We still pass `n_binders` to function calls so that calls into python
know how many values they should return.
2018-04-12 10:32:49 -07:00
James Reed
1533155c4e
[JIT][script] Implement compile-time tuples & starred unpacking (#6214)
* Something that works

* Tuple sugared value

* Works with commenting out input size check

* support string frontend

* Initial starred assignment

* Fix parser

* Fixup tests

* clang-format

* fix rebase error

* lint

* move star assign test to string frontend to make py2 happy

* Py2 fix: parse starargs from Call node

* Address some comments

* Fixup merge

* Remove overloaded unary operators

* Bugfix and test case

* Address a few more comments

* asValues -> asTuple

* Remove unrolledFor stuff

* Fixup getValues

* Pass CallsiteDescriptor struct and have different behavior for different call types

* Address comments and lint

* some type checks

* Address comments

* lint

* Fix mistake
2018-04-09 19:34:51 -07:00
Adam Paszke
da6c3c90d9
Relax constraints on return statements in the script (#6070)
Script functions can now have no return statements, empty
return statements, or return one or more values.

Additionally fix the lexer to always emit TK_NEWLINE before
TK_DEDENT, which simplifies the parser.
2018-03-31 18:35:33 +02:00
Richard Zou
1807bacd65 Fix printing of unknown binop operator in torchscript (#6069)
Before, using an unknown binary operator like `@`:
```
import torch
@torch.jit.script
def mm(x, y):
    return x @ y

x = torch.randn(4, 3)
y = torch.randn(3, 2)
mm(x, y)
```
resulted in [this not-so-readable trace](https://gist.github.com/zou3519/052b8998108c4bc0fe0e7c85c6f5758e).

Now, it tells the user that the problem is an unknown binary operator:
```
NotSupportedError: unsupported binary operator: MatMult
@torch.jit.script
def mm(x, y):
    return x @ y
            ~~~ <--- HERE
```
2018-03-28 19:41:45 +02:00
James Reed
213fa61706 Implement range for loop in script (#5827)
* Implement range for loop in script

* Fix handling of boolean constants

* Use WithInsertPoint

* Allow dynamic max trip count

* fix symbols

* Fix argument order

* fix test

* Add insert{Input,Output} APIs and use them

* Factor out condition stuff

* clang-format

* Address remaining comments

* Fix tests

* Implement script in AST frontend
2018-03-23 11:55:32 -04:00
Adam Paszke
418aad2c54 Add support for subscripts in Python frontend (#5890) 2018-03-22 01:11:25 -04:00
Adam Paszke
e6ac93b817 Add support for number and list literals in Python frontend (#5843) 2018-03-17 10:22:23 -04:00
Adam Paszke
694bee1f7e
Fix the rule for Assign in JIT's Python frontend (#5793) 2018-03-15 09:14:03 +01:00
Zachary DeVito
41285edbb6 [jit] add a compiled script module (#5630)
Add script::Module C++ class to represent script modules
switch AST -> IR conversion to work on Modules/Methods rather than raw graphs
function-only AST -> IR conversion is just a simplified case where there is
only one module with a single method and no parameters.
introduce SugaredValue in compiler.h to represent values in scope in a script
function that are not first-class and that get desugared. This is used to
represent the module's self parameter, as well as python function calls,
and method calls on tensor
provide a Python ScriptModule that provides a nice API on top of script::Module
allowing for the definition of script modules with methods, parameters,
and submodules
Not in this PR but intended for the future:

ScriptModule actually subclasses nn.Module, with most methods implemented
Unification of tracedmodule and script module functionality into one container class.

Detailed changelog:

* Switch compiler over to using Module, but don't
use them yet.

* Remove intermediate attribute encoding in compiler

* Create SugaredValue object to handle resolution
of compiled module.

* switch to_ir to modules, implement Select

* hacky python wrappers

* Private ScriptModule

* Add `define` to script module

* Attributes use TK_LIST_LITERAL

this anticipates adding a real list literal expression to the language.

* Add a metaclass to make sure script stubs are registered

* Add a test

* Doc createResolutionCallback

* Docs and minor editing

* Address PR comments

* Document

* Fix unicode issue
2018-03-12 09:52:40 -04:00
Adam Paszke
e4c303f373
Defer shape analysis failures until runtime (#5574) 2018-03-09 18:43:03 +01:00
Adam Paszke
5597aba868
Add return statement to the JIT AST (#5578) 2018-03-06 13:14:53 +01:00
Adam Paszke
a0118533ef
Add a print() function to the JIT script (#5274)
Additionally:
- add support for calling functions that are not methods in the Python frontend
- add an end-to-end test for the Python frontend
- add a capture_stdout helper for checking that `print` actually works
2018-02-24 11:15:55 +01:00
Adam Paszke
c2a3d85a07 Traverse sub-blocks in JIT passes (#5329)
* Traverse sub-blocks in JIT passes

* Add an extra check to prevent cross-block fusion
2018-02-22 17:32:31 -08:00
Adam Paszke
cb2fd39fdd
Add Python frontend to the JIT (#5190) 2018-02-15 22:53:19 +01:00