Summary:
We are seeing `aten._native_multi_head_attention` op (not in core Aten op set) is left in the exported graph and causes problems in the downstream at runtime.
Two proposed solutions:
1. Disable fast path while tracing to leverage the non-optimized path to get decomp, that way, the blamed op won't show up in the exported graph
2. Add a decomp rule for `aten._native_multi_head_attention`
After discussing with kimishpatel and bdhirsh, #1 is preferred and verified it could immediately unblock the critical model enablement work for PP.
Test Plan: CI
Differential Revision: D48169806
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106824
Approved by: https://github.com/kimishpatel
Fixes#103818
1. for some special nn.Modules, there are checks which only support cuda, so I add `privateuse1` check.
2. when get the device type for `privateuse1` by `torch._C._get_privateuse1_backend_name()`, it will get error in `torch.jit.script`, so I add a global variable to avoid this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103419
Approved by: https://github.com/albanD
Summary:
This fixes an issue raised in [is_causal parameter in torch.nn.TransformerEncoderLayer.forward does not work #96941](https://github.com/pytorch/pytorch/issues/96941) where results computed with is_causal do not properly reflect causal masking.
In PyTorch 2.0, Accelerated PT Transformers added the is_causal parameter to legacy nn.Transformer* and nn.MHA APIs aligned with and intended to engage the is_causal parameter of the new scaled_dot_product_attention (SDPA) operator.
At present is_causal works differently for Transformer* modules, the nn.MHA and F.MHA:
* The nn.Transformer* modules treat is_causal as an optional indicator about the format of attn_mask. This is because some layers (such as the CLIP layer use the attention mask in the layer, and thus the attn_mask was a required feature.)
* Initially, nn.MHA and F.MHA were defined to align with F.SDPA in behavior: a user may specify either the attention mask, or is_causal, but not both. It seemed to make sense at the time to align SDPA and MHA, esp since there was a larger overlap of parameters which have since changed, e.g., with the removal of need_weights from SDPA. (See below for why this makes sense.)
Unfortunately, this does not work because of how MHA was changed to handle the need_weights parameter. When need_weights is present, we do not (any more) call SDPA because support for need_weights was removed from SDPA before the release. The rationale is that need_weights defeats all optimization at the foundation of SDPA performance. Having the flag might thus mislead users into thinking they get good performance and have them disappointed when they enable a legacy feature of MHA which massively degrades performance. (They might not think anything of enabling that, because it is on by default in MHA today, which leads to more issues.)
Since SDPA does not (no longer) support need_weights, we need to pick a separate path which implements attention using a set of discrete operations that allocates a tensor for weights. Alas, this code path does not have support for is_causal, because attention is implemented as matmul and using the attention mask. Thus, is_causal has no impact. (A substantially similar situation arises with how kpm is implemented today because Nested Tensors are not supported by torch.compile() in 2.0)
This problem was masked because all uses of legacy nn.MHA (and F.MHA) come through nn.Transformer* which called self-attention (i.e., nn.MHA) only ever with the attention mask attn_mask, and never with is_causal, a missed optimization opportunit that would have been addressed in a future performance update.
Regrettably, always calling nn.MHA with attn_mask prevented diagnosing of the issue of not having a suitable attention mask when need_weights support was dropped from SDPA and a discrete implementation of attention was added for that scenario, and for the execution path with key_padding_mask.
We have two options to address this issue:
Solution 1: Whenever nn.MHA and F.MHA are executed with is_causal set, we internally create a causal mask at significant expense of allocating a tensor and filling it with a triangular causal matrix. This increases memory usage, and runtime, for allocating a causal mask. To add insult to injury, in all current (and likely future) execution scenarios, MHA is called by a model using the nn.Transformer API which already has that matrix and passes it from nn.module to nn.module. Then the passing in of attn_mask has to be suppressed by nn.TransformerEncoderLayer, only for nn.MHA to immediately allocate the very same tensor again to satisfy the requirement to have an attention mask for the computation. (We expect new use cases to use SDPA directly.)
Solution 2: We align the behavior of nn.MHA and F.MHA with the rest of the existing nn.Transformer API, and require the attention mask to be passed into nn.MHA in addition to is_causal as an optional indicator about the nature of the attention mask rather than as an alternative to attn_mask. Then, when we choose the code path for processing MHA with need_weights or a key_padding_mask, we have the attn_mask passed down through the nn.Transformer* hierarchy, without the added overhead of allocating an attention mask as in scenario 1.
This PR implements solution 2 which offers better performance and in retrospect aligns MHA better with the rest of the Transformer modules as the definition of SDPA evolved into a more streamlined high-performance operator. It ostensibly changes how is_causal works, by requiring the attention mask to be specified. However, as described here, and as shown in the submitted issue, is_causal is not working as intended today, so it requires a change regardless.
In that sense, a change in API does not occur per-se, as the current implementation is not working, and a change has to occur either way to resolve the submitted issue, breaking any use cases that depend on the current implementation. Checks exist (and more can be added) that flag any scenarios where is_causal is passed as True, but no attention mask is provided, ensuring that there's not quiet change from even the faulty behavior present in 2.0.
As an upside, the present implementation will improve performance by addressing the passing of the is_causal flag from Transformer modules to MHA, speeding up training for these examples, e.g., finetuning BERT, RoBERTa, XLM-R models.
Differential Revision: D44245725
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97214
Approved by: https://github.com/albanD
Summary: fix src and pad mask bool regression
This fixes a regression introduced previously with #92733. That PR unified testing of masks to remove Byte Tensors as permissible mask, introduced mask compatibility check, and mask conversion to FP mask. The problem addressed in this PR was that after the first mask had been converted, a check for mask compatibility would fail.
Test Plan: sandcastle & github
Differential Revision: D43782858
Fixes https://github.com/pytorch/pytorch/issues/95702
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96009
Approved by: https://github.com/malfet
Summary:
Regularize mask handling for attn_mask and key_padding_mask
* Update documentation to remove reference to byte masks (which were deprecated long ago)
* Introduce check and warn about deprecation if attn_mask and key_padding_mask types mismatch
* Convert all masks to float before combining
* Combine by adding
Test Plan: sandcastle & github CI
Differential Revision: D42653215
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92733
Approved by: https://github.com/ngimel, https://github.com/drisspg
Summary: Introduce causal mask
This PR introduces a causal mask option _causal_mask (as well as causal mask detection if attn_mask is provided), since current custom kernels do not support arbitrary masks.
Test Plan: sandcastle & github ci/cd
Differential Revision: D41723137
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90508
Approved by: https://github.com/albanD
Since we already enforce eval mode for the fast_path, we do not need to also check for a falsy dropout value, as a model trained with dropout will have a non-zero dropout during eval mode, even though it won't be applied.
Fixes#88806
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88831
Approved by: https://github.com/drisspg
Fixes T135842750 (follow-up for #87377)
## Description
At present, having both `src_key_padding_mask` and `src_mask` at the same time is not supported on the fastpath in Transformer and Multi-Head Attention.
This PR enables using both masks on the fastpath on CPU and GPU: if both masks are passed, we merge them into a 4D mask in Python and change mask type to 2 before passing downstream.
Downstream processing in native code is not changed, as it already supports 4D mask. Indeed, it is done depending on the device:
- on CUDA, by `SoftMax.cu::masked_softmax_cuda`. When mask type is 2, it calls either `dispatch_softmax_forward` -> `softmax_warp_forward` or `at::softmax` (depending on the input size). In both cases 4D mask is supported.
- on CPU, by `SoftMax.cpp::masked_softmax_cpp`. It calls `hosted_softmax` which supports 4D mask.
## Tests
- Extended `test_mask_check_fastpath` to check that fast path is indeed taken in Transformer when two masks are passed
- Added `test_multihead_self_attn_two_masks_fast_path_mock` to check that fast path is taken in MHA when two masks are passed
- Added `test_multihead_self_attn_two_masks_fast_path` to check that fast and slow paths give the same result when two masks are passed in MHA
- `test_masked_softmax_mask_types` now covers mask type 2
- `test_transformerencoderlayer_fast_path` (CPU smoke test) is expanded to the case of both masks provided simultaneously
- `test_masked_softmax_devices_parity` checks that mask type 2 is accepted by CPU and CUDA paths
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88488
Approved by: https://github.com/mikekgfb
## Issues
Fixes https://github.com/pytorch/pytorch/issues/81129#issuecomment-1179435674
## Description
Passing a 2D attention mask `src_mask` into the fast path of `TransformerEncoderLayer` in CPU was causing an error and so was disabled in https://github.com/pytorch/pytorch/pull/81277. This PR unrolls this fix, enabling `src_mask` on the fast path:
- Either attention mask `src_mask` of shape `(L, L)` or padding mask `src_key_padding_mask` of shape `(B, L)` are now allowed on the CPU fast path. If softmax is applied along the last dimension (as in multi-head attention), these masks are processed without expanding them to 4D. Instead, when iterating through the input, `Softmax.cpp::host_softmax` converts the index to match the mask dimensions, depending on the type.
- If softmax is applied along the dimension other than the last, `Softmax.cpp::masked_softmax_cpu` expands masks to 4D, converting them to `mask_type=2`. Theoretically one could also add special optimized cases for `dim=0, 1, 2` and process them without mask expansion, but I don't know how often is that used
## Tests:
- `test_transformerencoderlayer_fast_path` is extended to cover both attention mask and padding mask
- `test_masked_softmax_mask_types_0_1` is added to ensure results from CPU softmax with attention and padding masks match the explicit slow calculation
- `test_masked_softmax_devices_parity` is added to ensure results from masked softmax on CPU and CUDA match
## Note
I had to replace `float` with `torch.get_default_dtype()` in a couple of tests for the following reason:
- `test_nn.py` [sets the default type to `torch.double`](https://github.com/pytorch/pytorch/blob/master/test/test_nn.py#L24-L26)
- If I execute `test_nn.py` and `test_transformers.py` in one `pytest` run, this default still holds for transformer tests
- Some tests in `test_transformers.py` which were previously following the slow path now switched to fast path, and hard-coded `float` started clashing with default `double`
Let me know if there is a better way around it - or maybe I'm not supposed to run tests with `pytest` like this
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87377
Approved by: https://github.com/mikekgfb, https://github.com/weiwangmeta, https://github.com/malfet
This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81947
Transformer fastpath multiplexes two arguments, src_mask [seq_len x seq_len] and src_key_padding_mask [batch_size x seq_len], and later deduces the type based on mask shape.
In the event that batch_size == seq_len, any src_mask is wrongly interpreted as a src_key padding_mask. This is fixed by requiring a mask_type identifier be supplied whenever batch_size == seq_len.
Additionally, added support for src_mask in masked_softmax CPU path.
Test Plan: existing unit tests + new unit tests (batch_size == seq_len)
Differential Revision: D37932240
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81947
Approved by: https://github.com/zrphercule