Commit Graph

48 Commits

Author SHA1 Message Date
pilot-j
a2552d5521 Fixed docstring errors inside torch/cuda/ and torch/optim/ (Docathon H2) (#112964)
Fixes #112592
1) **File: torch/cuda/random.py**
```
Before:
/content/pytorch/torch/cuda/random.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/cuda/random.py:21 in public function `get_rng_state`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/random.py:43 in public function `get_rng_state_all`:
        D202: No blank lines allowed after function docstring (found 1)
/content/pytorch/torch/cuda/random.py:43 in public function `get_rng_state_all`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/random.py:54 in public function `set_rng_state`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:79 in public function `set_rng_state_all`:
        D208: Docstring is over-indented
/content/pytorch/torch/cuda/random.py:79 in public function `set_rng_state_all`:
        D209: Multi-line docstring closing quotes should be on a separate line
/content/pytorch/torch/cuda/random.py:79 in public function `set_rng_state_all`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:79 in public function `set_rng_state_all`:
        D414: Section has no content ('Args')
/content/pytorch/torch/cuda/random.py:88 in public function `manual_seed`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/random.py:88 in public function `manual_seed`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:110 in public function `manual_seed_all`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/random.py:110 in public function `manual_seed_all`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:128 in public function `seed`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/random.py:128 in public function `seed`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:146 in public function `seed_all`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/random.py:146 in public function `seed_all`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
/content/pytorch/torch/cuda/random.py:167 in public function `initial_seed`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
18
```

```
After:
/content/pytorch/torch/cuda/random.py:1 at module level:
        D100: Missing docstring in public module
1

```
2) **File: torch/cuda/amp/autocast_mode.py**
```
Before: /content/pytorch/torch/cuda/amp/autocast_mode.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/cuda/amp/autocast_mode.py:18 in public class `autocast`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/autocast_mode.py:23 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/cuda/amp/autocast_mode.py:38 in public method `__enter__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/autocast_mode.py:44 in public method `__exit__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/autocast_mode.py:49 in public method `__call__`:
        D102: Missing docstring in public method
/content/pytorch/torch/cuda/amp/autocast_mode.py:90 in public function `custom_fwd`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/autocast_mode.py:90 in public function `custom_fwd`:
        D400: First line should end with a period (not 'f')
/content/pytorch/torch/cuda/amp/autocast_mode.py:90 in public function `custom_fwd`:
        D401: First line should be in imperative mood; try rephrasing (found 'Helper')
/content/pytorch/torch/cuda/amp/autocast_mode.py:130 in public function `custom_bwd`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/autocast_mode.py:130 in public function `custom_bwd`:
        D400: First line should end with a period (not 'f')
/content/pytorch/torch/cuda/amp/autocast_mode.py:130 in public function `custom_bwd`:
        D401: First line should be in imperative mood; try rephrasing (found 'Helper')
12
```
```
After:
/content/pytorch/torch/cuda/amp/autocast_mode.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/cuda/amp/autocast_mode.py:23 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/cuda/amp/autocast_mode.py:38 in public method `__enter__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/autocast_mode.py:44 in public method `__exit__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/autocast_mode.py:49 in public method `__call__`:
        D102: Missing docstring in public method
5
```

3)  **File: torch/cuda/amp/grad_scaler.py**
```
Before: /content/pytorch/torch/cuda/amp/grad_scaler.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/cuda/amp/grad_scaler.py:17 in private class `_MultiDeviceReplicator`:
        D200: One-line docstring should fit on one line with quotes (found 3)
/content/pytorch/torch/cuda/amp/grad_scaler.py:39 in public class `OptState`:
        D101: Missing docstring in public class
/content/pytorch/torch/cuda/amp/grad_scaler.py:50 in public class `GradScaler`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/grad_scaler.py:50 in public class `GradScaler`:
        D400: First line should end with a period (not 'g')
/content/pytorch/torch/cuda/amp/grad_scaler.py:115 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/cuda/amp/grad_scaler.py:354 in public method `step`:
        D400: First line should end with a period (not ':')
/content/pytorch/torch/cuda/amp/grad_scaler.py:456 in public method `update`:
        D401: First line should be in imperative mood (perhaps 'Update', not 'Updates')
/content/pytorch/torch/cuda/amp/grad_scaler.py:529 in public method `get_scale`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:544 in public method `get_growth_factor`:
        D200: One-line docstring should fit on one line with quotes (found 3)
/content/pytorch/torch/cuda/amp/grad_scaler.py:544 in public method `get_growth_factor`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:550 in public method `set_growth_factor`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/grad_scaler.py:550 in public method `set_growth_factor`:
        D400: First line should end with a period (not ':')
/content/pytorch/torch/cuda/amp/grad_scaler.py:557 in public method `get_backoff_factor`:
        D200: One-line docstring should fit on one line with quotes (found 3)
/content/pytorch/torch/cuda/amp/grad_scaler.py:557 in public method `get_backoff_factor`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:563 in public method `set_backoff_factor`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/grad_scaler.py:563 in public method `set_backoff_factor`:
        D400: First line should end with a period (not ':')
/content/pytorch/torch/cuda/amp/grad_scaler.py:570 in public method `get_growth_interval`:
        D200: One-line docstring should fit on one line with quotes (found 3)
/content/pytorch/torch/cuda/amp/grad_scaler.py:570 in public method `get_growth_interval`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:576 in public method `set_growth_interval`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/cuda/amp/grad_scaler.py:576 in public method `set_growth_interval`:
        D400: First line should end with a period (not ':')
/content/pytorch/torch/cuda/amp/grad_scaler.py:592 in public method `is_enabled`:
        D200: One-line docstring should fit on one line with quotes (found 3)
/content/pytorch/torch/cuda/amp/grad_scaler.py:592 in public method `is_enabled`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:598 in public method `state_dict`:
        D400: First line should end with a period (not ':')
/content/pytorch/torch/cuda/amp/grad_scaler.py:598 in public method `state_dict`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
/content/pytorch/torch/cuda/amp/grad_scaler.py:624 in public method `load_state_dict`:
        D401: First line should be in imperative mood (perhaps 'Load', not 'Loads')
/content/pytorch/torch/cuda/amp/grad_scaler.py:649 in public method `__getstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/grad_scaler.py:665 in public method `__setstate__`:
        D105: Missing docstring in magic method
28
```
```
After:
/content/pytorch/torch/cuda/amp/grad_scaler.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/cuda/amp/grad_scaler.py:40 in public class `OptState`:
        D101: Missing docstring in public class
/content/pytorch/torch/cuda/amp/grad_scaler.py:117 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/cuda/amp/grad_scaler.py:647 in public method `__getstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/cuda/amp/grad_scaler.py:663 in public method `__setstate__`:
        D105: Missing docstring in magic method
5
```
4) **File: torch/optim/_functional.py**
```
Before:
/content/pytorch/torch/optim/_functional.py:1 at module level:
        D400: First line should end with a period (not 'e')
1
```
```
After:
0

```
5) **File: torch/optim/__init__.py**
```
Before:
/content/pytorch/torch/optim/__init__.py:1 at module level:
        D205: 1 blank line required between summary line and description (found 0)
1
```
```
After:
0

```
6) **File: torch/optim/lbfgs.py**
```
Before:
/content/pytorch/torch/optim/lbfgs.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/lbfgs.py:185 in public class `LBFGS`:
        D205: 1 blank line required between summary line and description (found 0)
/content/pytorch/torch/optim/lbfgs.py:185 in public class `LBFGS`:
        D400: First line should end with a period (not 'c')
/content/pytorch/torch/optim/lbfgs.py:215 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/lbfgs.py:285 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
5
```
```
After:
/content/pytorch/torch/optim/lbfgs.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/lbfgs.py:217 in public method `__init__`:
        D107: Missing docstring in __init__
2
```
7)**File: torch/optim/sparse_adam.py**
```
Before: /content/pytorch/torch/optim/sparse_adam.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/sparse_adam.py:7 in public class `SparseAdam`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/sparse_adam.py:8 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/sparse_adam.py:40 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
4
```
```
After:
/content/pytorch/torch/optim/sparse_adam.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/sparse_adam.py:7 in public class `SparseAdam`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/sparse_adam.py:8 in public method `__init__`:
        D107: Missing docstring in __init__
3
```
8) **File:torch/optim/adadelta.py**
```
Before:
/content/pytorch/torch/optim/adadelta.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adadelta.py:11 in public class `Adadelta`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adadelta.py:12 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adadelta.py:44 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adadelta.py:82 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/adadelta.py:193 in public function `adadelta`:
        D202: No blank lines allowed after function docstring (found 1)
6
```
```
After:
/content/pytorch/torch/optim/adadelta.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adadelta.py:11 in public class `Adadelta`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adadelta.py:12 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adadelta.py:44 in public method `__setstate__`:
        D105: Missing docstring in magic method
4
```
9) **File: torch/optim/adagrad.py**
```
Before:
/content/pytorch/torch/optim/adagrad.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adagrad.py:11 in public class `Adagrad`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adagrad.py:12 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adagrad.py:63 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adagrad.py:78 in public method `share_memory`:
        D102: Missing docstring in public method
/content/pytorch/torch/optim/adagrad.py:100 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/adagrad.py:201 in public function `adagrad`:
        D202: No blank lines allowed after function docstring (found 1)
7
```
```
After:
/content/pytorch/torch/optim/adagrad.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adagrad.py:11 in public class `Adagrad`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adagrad.py:12 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adagrad.py:63 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adagrad.py:78 in public method `share_memory`:
        D102: Missing docstring in public method
5
```
10) **File: torch/optim/adam.py**
```
Before:
/content/pytorch/torch/optim/adam.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adam.py:14 in public class `Adam`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adam.py:15 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adam.py:65 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adam.py:135 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/adam.py:281 in public function `adam`:
        D202: No blank lines allowed after function docstring (found 1)
/content/pytorch/torch/optim/adam.py:281 in public function `adam`:
        D205: 1 blank line required between summary line and description (found 0)
7
```
```
After:
/content/pytorch/torch/optim/adam.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adam.py:14 in public class `Adam`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adam.py:15 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adam.py:65 in public method `__setstate__`:
        D105: Missing docstring in magic method
4

```
11) **File: torch/optim/adamax.py**
```
Before:
/content/pytorch/torch/optim/adamax.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adamax.py:12 in public class `Adamax`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adamax.py:13 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adamax.py:47 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adamax.py:91 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/adamax.py:203 in public function `adamax`:
        D202: No blank lines allowed after function docstring (found 1)
6
```
```
After:
/content/pytorch/torch/optim/adamax.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adamax.py:12 in public class `Adamax`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adamax.py:13 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adamax.py:47 in public method `__setstate__`:
        D105: Missing docstring in magic method
4
```
12) **File: torch/optim/adamw.py**
```
Before:
/content/pytorch/torch/optim/adamw.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adamw.py:12 in public class `AdamW`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adamw.py:13 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adamw.py:73 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/adamw.py:153 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/adamw.py:304 in public function `adamw`:
        D202: No blank lines allowed after function docstring (found 1)
6

```
```
After:
/content/pytorch/torch/optim/adamw.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/adamw.py:12 in public class `AdamW`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/adamw.py:13 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/adamw.py:73 in public method `__setstate__`:
        D105: Missing docstring in magic method
4

```
13) **File: torch/optim/asgd.py**
```
Before:
/content/pytorch/torch/optim/asgd.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/asgd.py:17 in public class `ASGD`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/asgd.py:18 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/asgd.py:52 in public method `__setstate__`:
        D105: Missing docstring in magic method
/content/pytorch/torch/optim/asgd.py:107 in public method `step`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
/content/pytorch/torch/optim/asgd.py:195 in public function `asgd`:
        D202: No blank lines allowed after function docstring (found 1)
6
```
```
After:
/content/pytorch/torch/optim/asgd.py:1 at module level:
        D100: Missing docstring in public module
/content/pytorch/torch/optim/asgd.py:17 in public class `ASGD`:
        D101: Missing docstring in public class
/content/pytorch/torch/optim/asgd.py:18 in public method `__init__`:
        D107: Missing docstring in __init__
/content/pytorch/torch/optim/asgd.py:52 in public method `__setstate__`:
        D105: Missing docstring in magic method
4
```
Resolved docstring errors as listed. I initially changed in the main branch of forked repo which caused changes to appear in my PR to other issue. I have fixed that and hope this PR won't have any conflicts.
Kindly review @svekars @jbschlosser.
In case of any other issues please let me know. Thanks!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112964
Approved by: https://github.com/kit1980
2023-11-13 22:16:44 +00:00
Matthew Hoffman
e40d6ae0a7 Improve torch.cuda.amp type hints (#108630)
Fixes #108629

1. Add the following to their modules' `__all__` so that pyright considers them to be publicly exported:
* [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast)
* [`torch.cuda.amp.GradScaler`](https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler)
* [`torch.cuda.amp.autocast`](https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast)
* [`torch.cuda.amp.custom_fwd`](https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.custom_fwd)
* [`torch.cuda.amp.custom_bwd`](https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.custom_bwd)
2. Add `overload`s for `torch.cuda.amp.GradScaler.scale` to differentiate when a `torch.Tensor` is returned vs. an `Iterable[torch.Tensor]` is returned based on the type of the `outputs` parameter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108630
Approved by: https://github.com/ezyang
2023-09-08 06:06:25 +00:00
Edward Z. Yang
3bf922a6ce Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249
Approved by: https://github.com/Skylion007
2023-07-29 23:37:30 +00:00
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Jane Xu
cde597efa1 [docs] Warn that GradScaler can scale under 1 (#101569)
Completes action item 1 in https://github.com/pytorch/pytorch/issues/99640

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101569
Approved by: https://github.com/ngimel
2023-05-16 23:56:07 +00:00
Masaki Kozuki
b87c7ab6d6 Remove redundant found_inf recompute from _step_supports_amp_unscaling path (#98620)
following https://github.com/pytorch/pytorch/pull/97415#issuecomment-1499787115.

Rel: https://github.com/pytorch/pytorch/pull/98613

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98620
Approved by: https://github.com/janeyx99
2023-04-20 19:24:09 +00:00
Peeyush Agarwal
ebd4c165ff Back out "GradScaler recomputes optimizer_state["found_inf_per_device"] before optimizer.step (#97415)" (#98613)
Summary: This change causes multi-GPU job from XI team to hang after 8K steps.

Differential Revision: D44797248

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98613
Approved by: https://github.com/ngimel
2023-04-07 23:31:31 +00:00
Xuehai Pan
e6888697c4 Revisit torch._six.string_classes removal (#94709) (#97863)
Revisit `torch._six.string_classes` (which is `(str, bytes)`) removal: `isinstance(obj, string_classes) -> isinstance(obj, str)`.

Both `str` and `bytes` are `Sequence` classes.

```python
In [1]: from typing import Sequence

In [2]: issubclass(bytes, Sequence)
Out[2]: True

In [3]: issubclass(str, Sequence)
Out[3]: True
```

Re-add `bytes` to type guards like:

```python
def is_seq(obj):
    return isinstance(obj, Sequence) and not isinstance(obj, (str, bytes))
```

Ref:

- https://github.com/pytorch/pytorch/pull/94709#issuecomment-1487282912
- #97737
- #97789
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97863
Approved by: https://github.com/Skylion007, https://github.com/albanD
2023-03-30 17:02:45 +00:00
Aaron Gokaslan
47dca20d80 [BE] Enable flake8-comprehension rule C417 (#97880)
Enables flake8-comprehension rule C417. Ruff autogenerated these fixes to the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97880
Approved by: https://github.com/ezyang, https://github.com/kit1980, https://github.com/albanD
2023-03-30 14:34:24 +00:00
Masaki Kozuki
b5edf18334 GradScaler recomputes optimizer_state["found_inf_per_device"] before optimizer.step (#97415)
I found a discrepancy between non-fused and fused optimizers, which is to use `optimizer_state["found_inf"]` or to recompute `found_inf`.

- non fused: e64ddd1ab9/torch/cuda/amp/grad_scaler.py (L289)
- fused: e64ddd1ab9/torch/cuda/amp/grad_scaler.py (L353)
    - where `_check_inf_per_device` is e64ddd1ab9/torch/cuda/amp/grad_scaler.py (L564-L573)

The other way to align the behavior is to use the existing `found_inf` in e64ddd1ab9/torch/cuda/amp/grad_scaler.py (L353).

I'd say this PR is for the sake of "safety" and the alternative is to keep the existing behavior.
I honestly have no idea if it's expected to double-check the sanity of gradients in `GradScaler.step`.

---

what I've observed in huggingface/transformers T5-base example so far seems like that non-fused optimizers lead to invalid parameters while the fused not.
The cause seems to be that `gradients` become inf/nan before `GradScaler.step(optimizer)` after `GradScaler._unscale_grads_` (more precicely, the call of `torch._amp_foreach_non_finite_check_and_unscale_`) in the script of the issue linked below, i.e. the gradient clipping and/or unscaling lead to inf/nan as these happen after the grad check. See
788300cc2a/aten/src/ATen/native/cuda/AmpKernels.cu (L165-L174).

Fixes #96755 🙏

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97415
Approved by: https://github.com/ngimel, https://github.com/janeyx99
2023-03-24 17:36:47 +00:00
Masaki Kozuki
22ea21da3d Change 1D Tensor of 1 element to 0D Tensor (#96994)
add 0d tensor to graph adam/adamw test

Affected:
- `torch.cuda.amp.GradScaler`'s `found_inf`, `_scale`, and `_growth_tracker`
- `step` of Adam & AdamW of `capturable`

Fixes #96776 🤞

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96994
Approved by: https://github.com/janeyx99
2023-03-21 18:24:19 +00:00
Xuehai Pan
b005ec62b9 [BE] Remove dependency on six and future (#94709)
Remove the Python 2 and 3 compatibility library [six](https://pypi.org/project/six) and [future](https://pypi.org/project/future) and `torch._six`. We only support Python 3.8+ now. It's time to retire them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94709
Approved by: https://github.com/malfet, https://github.com/Skylion007
2023-02-14 09:14:14 +00:00
Aaron Gokaslan
1e2d82b8e4 [BE] Merge isinstance calls together (#94419)
Simplify and speeds up isinstance calls by checking for multiple types at the same time.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94419
Approved by: https://github.com/ezyang
2023-02-09 00:47:26 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
Masaki Kozuki
4207d3c330 FusedAdam(W) should take OptState into account before unscaling grads (#94060)
the optimizers have to consult `OptState` before unscaling gradients because we could call `GradScaler.unscale_` explicitly to for e.g. `clip_grad_norm_` as mentioned in e52786f3d1/torch/cuda/amp/grad_scaler.py (L235-L266) and https://pytorch.org/docs/stable/notes/amp_examples.html#working-with-unscaled-gradients

Related #90752

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94060
Approved by: https://github.com/albanD
2023-02-04 05:20:13 +00:00
Masaki Kozuki
a23ed38f9a [mta][foreach] Implement fused adamw (#88015)
related: https://github.com/pytorch/pytorch/issues/68041, https://github.com/pytorch/pytorch/issues/71274, https://github.com/pytorch/pytorch/issues/80167
possibly related to https://github.com/pytorch/pytorch/issues/80595#issuecomment-1178519436

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88015
Approved by: https://github.com/albanD, https://github.com/ngimel
2023-02-01 19:32:29 +00:00
Masaki Kozuki
bc03aa6013 Store autocast_gpu_dtype in custom_fwd and custom_bwd for BFloat16 autocast (#88029)
As per #87979, `custom_bwd` seems to forcefully use `torch.float16` for `torch.autograd.Function.backward` regardless of the `dtype` used in the forward.

Changes:
- store the `dtype` in `args[0]`
- update tests to confirm the dtype of intermediate result tensors that are outputs of autocast compatible `torch` functions

cc @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88029
Approved by: https://github.com/ngimel
2022-10-31 22:45:26 +00:00
anjali411
e2a4dfa468 Add correct __all__ for torch.distributed and torch.cuda submodules (#85702)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85702
Approved by: https://github.com/ezyang, https://github.com/albanD, https://github.com/rohan-varma
2022-10-10 19:15:24 +00:00
anjali411
85073b8ddc Add __all__ to fx, fistributed and cuda submodules (#85080)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85080
Approved by: https://github.com/albanD
2022-09-21 18:04:58 +00:00
ProGamerGov
8def154e00 Fix multiple docstring type mistakes (#82474)
### Description

* Docstrings using `(tuple of ints)` shows up as `(tuple of python:ints)`, so I fixed them by making the `int` no longer plural. Example: https://pytorch.org/docs/stable/generated/torch.permute.html#torch.permute
* A docstring type in JIT had one of its types incorrectly highlighted as code. Example: https://pytorch.org/docs/stable/generated/torch.jit.script.html#torch.jit.script
* I found some docstring type usages of `string` that had not yet been converted to `str` after #82410
* Some docstrings incorrectly listed their defaults inside the docstring types.
* I also found a docstring that was missing its type

### Testing
No testing should be required.

---

In the developer guidelines, there should probably be standards listed for the docstring types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82474
Approved by: https://github.com/albanD
2022-07-29 17:45:37 +00:00
Sergii Dymchenko
99244435f6 Resolve TODO after Python 2 for custom_fwd (#78592)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78592
Approved by: https://github.com/seemethere
2022-06-01 05:17:41 +00:00
leslie-fang-intel
3a112ebb57 add autocast cpu doc
As discussed in https://github.com/pytorch/pytorch/issues/55374#issuecomment-968333614, here we update the cpu autocast operation list in autocast API document.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68567
Approved by: https://github.com/ezyang
2022-03-22 02:02:43 +00:00
jjsjann123
1ec732bc46 Add fp16/fp32 autocasting to JIT/TorchScript (#63939)
Summary:
Adds mixed precision autocasting support between fp32/fp16 to torchscript/JIT. More in depth descriptoin can be found at [torch/csrc/jit/JIT-AUTOCAST.md](https://github.com/pytorch/pytorch/pull/63939/files#diff-1f1772aaa508841c5bb58b74ab98f49a1e577612cd9ea5c386c8714a75db830b)

This PR implemented an autocast optimization pass that inserts casting ops per AMP rule (torch/csrc/jit/passes/autocast.cpp), that mimics the behavior of eager autocast. The pass also takes into consideration the context of `torch.cuda.amp.autocast` and only inserts casting ops within the enabled context manager, giving feature parity as with eager amp autocast.

We currently provide JIT AMP autocast as a prototyping feature, so it is default off and could be turned on via `torch._C._jit_set_autocast_mode(True)`

The JIT support for autocast is subject to different constraints compared to the eager mode implementation (mostly related to the fact that TorchScript is statically typed), restriction on the user facing python code is described in doc torch/csrc/jit/JIT-AUTOCAST.md

This is a prototype, there are also implementation limitation that's necessary to keep this PR small and get something functioning quickly on upstream, so we can iterate on designs.

Few limitation/challenge that is not properly resolved in this PR:
1. Autocast inserts cast operation, which would have impact on scalar type of output tensor feeding downstream operations. We are not currently propagating the updated scalar types, this would give issues/wrong results on operations in promotion rules.

2. Backward for autodiff in JIT misses the casting of dgrad to input scalar type, as what autograd does in eager. This forces us to explicitly mark the casting operation for certain operations (e.g. binary ops), otherwise, we might be feeding dgrad with mismatch scalar type to input. This could potentially break gradient function consuming dgrad. (e.g. gemm backwards, which assumes grad_output to be of same scalar type as input')

3. `torch.autocast` api has an optional argument `dtype` which is not currently supported in the JIT autocast and we require a static value.

Credit goes mostly to:
tlemo
kevinstephano

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63939

Reviewed By: navahgar

Differential Revision: D31093381

Pulled By: eellison

fbshipit-source-id: da6e26c668c38b01e296f304507048d6c1794314
2021-10-27 12:11:36 -07:00
leslie-fang-intel
768014b3e6 Allow disabling cache in autocast (automatic mixed precision) (#63552)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63552

In this PR, we want to exclude these 2 cases in the `Autocast` weight cache usages:

- Using `torch.jit.trace` under the `Autocast`
As report in https://github.com/pytorch/pytorch/issues/50231 and several other discussions, using `torch.jit.trace` under the `Autocast`, the trace process would hit Autocast's weight cache and fails. So we should disable weight cache under the trace process.
- Using `Autocast` with `Grad mode`

  - Usually we are using `Grad mode` for training. Since in the training phase, the weight will change in every step. So we doesn't need to cache the weight.
  - For the recommended `Autocast` training case in the [doc](https://pytorch.org/docs/stable/amp.html), `Autocast` will clear the cache every step leaving the context. We should disable it to save the clear operations.
    ```
    model = Net().cuda()
    optimizer = optim.SGD(model.parameters(), ...)

    for input, target in data:
        optimizer.zero_grad()
        with autocast():
            output = model(input)
            loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    ```

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D30644913

Pulled By: ezyang

fbshipit-source-id: ad7bc87372e554e7aa1aa0795e9676871b3974e7
2021-09-08 07:47:18 -07:00
riship
6324d98e9e bf16 Error message cleanup as well as addition of is_bf16_supported (#63798)
Summary:
ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63798

Reviewed By: heitorschueroff

Differential Revision: D30526187

Pulled By: ngimel

fbshipit-source-id: c484aec14638097c96c720095d3491249b6b2d14
2021-08-25 09:59:59 -07:00
Rishi Puri
324673a537 rebase for autocast updates to include device_type and dtype flags (#61002)
Summary:
Fixes #{55374}
https://github.com/pytorch/pytorch/issues/55374

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61002

Reviewed By: malfet, mruberry

Differential Revision: D30016812

Pulled By: ngimel

fbshipit-source-id: 6e09a29f539d28e9aea5cd9489b1e633cc588033
2021-08-10 20:03:12 -07:00
Michael Carilli
bbc3cc6718 [CUDA graphs] [BC-breaking] Makes torch.cuda.amp.GradScaler scale updates in-place for better composability with graph capture (#55562)
Summary:
I'd like the following pattern (a natural composition of Amp with full fwd+bwd capture) to work:
```python
# Create "static_input" with dummy data, run warmup iterations,
# call optimizer.zero_grad(set_to_none=True), then
g = torch.cuda._Graph()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
    optimizer.zero_grad(set_to_none=True)
    g.capture_begin()
    with autocast():
        out = model(static_input)
        loss = loss_fn(out)
    scaler.scale(loss).backward()
    g.capture_end()
torch.cuda.current_stream().wait_stream(s)

# Training loop:
for b in data:
    # optimizer.zero_grad() deliberately omitted, replay()'s baked-in backward will refill statically held .grads
    static_input.copy_(b)
    g.replay()
    scaler.step(optimizer)
    scaler.update()
```

Right now `GradScaler` can't work with this pattern because `update()` creates the scale tensor for the next iteration out of place. This PR changes `update()` to act in place on a long-lived scale tensor that stays static across iterations.

I'm not sure how this change affects XLA (see https://github.com/pytorch/pytorch/pull/48570), so we shouldn't merge without approval from ailzhang yaochengji.

Tagged bc-breaking because it's a change to the amp update utility function in native_functions.yaml. The function was never meant to be user-facing though.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55562

Reviewed By: zou3519

Differential Revision: D28046159

Pulled By: ngimel

fbshipit-source-id: 02018c221609974546c562f691e20ab6ac611910
2021-04-30 13:03:05 -07:00
Guilherme Leobas
975d9f2551 Mypy fixes for pytorch master (#52090)
Summary:
This PR adds fixes mypy issues on the current pytorch main branch. In special, it replaces occurrences of `np.bool/np.float` to `np.bool_/np.float64`, respectively:

```
test/test_numpy_interop.py:145: error: Module has no attribute "bool"; maybe "bool_" or "bool8"?  [attr-defined]
test/test_numpy_interop.py:159: error: Module has no attribute "float"; maybe "float_", "cfloat", or "float64"?  [attr-defined]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52090

Reviewed By: walterddr

Differential Revision: D26469596

Pulled By: malfet

fbshipit-source-id: e55a5c6da7b252469e05942e0d2588e7f92b88bf
2021-02-17 10:39:51 -08:00
Chengji Yao
3d77529f5b enable autocast for xla (#48570)
Summary:
For enabling amp in torch/xla, see [this](https://github.com/pytorch/xla/pull/2654).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48570

Reviewed By: ezyang

Differential Revision: D26120627

Pulled By: ailzhang

fbshipit-source-id: 32627b17c04bfdad128624676ea9bf6f117bc97d
2021-02-11 12:06:13 -08:00
Chester Liu
58eb23378f Clean up usage of torch._six partially (#49785)
Summary:
See https://github.com/pytorch/pytorch/issues/42919

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49785

Reviewed By: mruberry

Differential Revision: D25963833

Pulled By: bugra

fbshipit-source-id: 11c90d6b8d3f206c9d0a4d8621b773beb10c6ba2
2021-02-08 13:58:34 -08:00
Samuel Marks
e6779d4357 [*.py] Rename "Arguments:" to "Args:" (#49736)
Summary:
I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings.

```sh
(pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do
    printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done
Args:      1095
Arguments: 0336
```

It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per:

  - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md)

  - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md)

  - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst)

Therefore, only `Args:` is valid. This PR replaces them throughout the codebase.

PS: For related PRs, see tensorflow/tensorflow/pull/45420

PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736

Reviewed By: albanD

Differential Revision: D25710534

Pulled By: soumith

fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
2020-12-28 09:34:47 -08:00
Nikita Shulga
1454cbf087 Make numpy optional dependency for torch.cuda.amp (#48154)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48154

Test Plan:
Uninstall `numpy` and try to importing `torch`

Discovered while working on https://github.com/pytorch/pytorch/issues/48145

Reviewed By: walterddr

Differential Revision: D25046307

Pulled By: malfet

fbshipit-source-id: c1171a49e03bdc40e8dc1d65928c6c12626e33db
2020-11-18 08:31:44 -08:00
Michael Carilli
72bc3d9de4 Use MTA for amp grad unscaling, enforce op math type in MTA functors, and allow op lambdas (#44778)
Summary:
Amp gradient unscaling is a great use case for multi tensor apply (in fact it's the first case I wrote it for).  This PR adds an MTA unscale+infcheck functor.  Really excited to have it for `torch.cuda.amp`. izdeby your interface was clean and straightforward to use, great work!

Labeled as bc-breaking because the native_functions.yaml exposure of unscale+infcheck changes from [`_amp_non_finite_check_and_unscale_` to `_amp_foreach_non_finite_check_and_unscale_`]( https://github.com/pytorch/pytorch/pull/44778/files#diff-f1e4b2c15de770d978d0eb77b53a4077L6289-L6293).

The PR also modifies Unary/Binary/Pointwise Functors to
- do ops' internal math in FP32 for FP16 or bfloat16 inputs, which improves precision ([and throughput, on some architectures!](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions)) and has no downside for the ops we care about.
- accept an instantiated op functor rather than an op functor template (`template<class> class Op`).  This allows calling code to pass lambdas.

Open question:  As written now, the PR has MTA Functors take care of pre- and post-casting FP16/bfloat16 inputs to FP32 before running the ops.  However, alternatively, the pre- and post-math casting could be deferred/written into the ops themselves, which gives them a bit more control.  I can easily rewrite it that way if you prefer.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44778

Reviewed By: gchanan

Differential Revision: D23944102

Pulled By: izdeby

fbshipit-source-id: 22b25ccad5f69b413c77afe8733fa9cacc8e766d
2020-10-01 07:51:16 -07:00
Nikita Shulga
b3135c2056 Enable torch.cuda.amp typechecking (#45480)
Summary:
Fix `torch._C._autocast_*_nesting` declarations in __init__.pyi

Fix iterable constructor logic: not every iterable can be constructed using `type(val)(val)` trick, for example it would not work for `val=range(10)` although `isinstance(val, Iterable)` is True
Change optional resolution logic to meet mypy expectations

Fixes https://github.com/pytorch/pytorch/issues/45436

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45480

Reviewed By: walterddr

Differential Revision: D23982822

Pulled By: malfet

fbshipit-source-id: 6418a28d04ece1b2427dcde4b71effb67856a872
2020-09-29 09:31:55 -07:00
Michael Carilli
7cdf786a07 fix typo in GradScaler docstring (#42236)
Summary:
Closes https://github.com/pytorch/pytorch/issues/42226.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42236

Reviewed By: albanD

Differential Revision: D22817980

Pulled By: ngimel

fbshipit-source-id: 4326fe028dba1dbeed454edc4e4d4fffa56f51d6
2020-07-29 13:14:57 -07:00
Michael Carilli
b4ccdef090 Allow torch.cuda.amp.GradScaler to support sparse gradients (#36786)
Summary:
Should close https://github.com/pytorch/pytorch/issues/35810.

I decided to keep sparse handling on the Python side for clarity, although it could be moved to the C++ side (into `_amp_non_finite_check_and_unscale_`) without much trouble.

For non-fp16 sparse grads the logic is simple (call `_amp_non_finite_check_and_unscale_` on `grad._values()`) instead of `grad` itself.  At least I hope it's that easy.

For fp16 sparse grads, it's tricker.  Sparse tensors can be uncoalesced.  From the [Note](https://pytorch.org/docs/master/sparse.html#torch.sparse.FloatTensor):
> Our sparse tensor format permits uncoalesced sparse tensors, where there may be duplicate coordinates in the indices; in this case, the interpretation is that the value at that index is the sum of all duplicate value entries.

An uncoalesced scaled fp16 grad may have values at duplicate coordinates that are all finite but large, such that adding them to make the coalesced version WOULD cause overflows.**  If I checked `_values()` on the uncoalesced version, it might not report overflows, but I think it should.

So, if the grad is sparse, fp16, and uncoalesced, I still call `_amp_non_finite_check_and_unscale_` to unscale `grad._values()` in-place, but I also double-check the coalesced version by calling a second `_amp_non_finite_check_and_unscale_` on `grad.coalesce()._values()`.  `coalesce()` is out-of-place, so this call doesn't redundantly affect `grad._values()`, but it does have the power to populate the same `found_inf` tensor.  The `is_coalesced()` check and `coalesce()` probably aren't great for performance, but if someone needs a giant embedding table in FP16, they're better than nothing and memorywise, they'll only create a copy of nnz gradient values+indices, which is still way better than changing the whole table to FP32.

An `unscale` variant with liberty to create unscaled grads out-of-place, and replace `param.grad` instead of writing through it, could get away with just one `_amp_non_finite_check_and_unscale_`.  It could say `coalesced = grad.coalesced()`, do only the stronger `_amp_non_finite_check_and_unscale_` on `coalesced._values()`, and set `param.grad = coalesced`.  I could even avoid replacing `param.grad` itself by going one level deeper and setting `param.grad`'s indices and values to `coalesced`'s, but that seems brittle and still isn't truly "in place".

** you could whiteboard an uncoalesced fp32 grad with the same property, but fp32's range is big enough that I don't think it's realistic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36786

Reviewed By: ezyang

Differential Revision: D22202832

Pulled By: ngimel

fbshipit-source-id: b70961a4b6fc3a4c1882f65e7f34874066435735
2020-06-24 09:10:49 -07:00
Michael Carilli
3b040c478a Make custom_fwd a no-op when not executed under autocast (#36171)
Summary:
Currently, a custom autograd function written with
```
torch.cuda.amp.custom_fwd(cast_inputs=dtype)
def forward(ctx, *args):
    ...
```
casts incoming floating-point CUDA tensors to `dtype` unconditionally, regardless of whether the function executes in an autocast-enabled region.  I think I had the wrong idea there.  Autocast-disabled regions should give the user control of input types.  Also, `custom_fwd(cast_inputs=dtype)`-decorated functions' behavior should align with native fp32list/fp16list functions.  C++-side casting wrappers have no effect when autocast is disabled, and  `custom_fwd`'s casting should behave the same way.

The present PR changes `custom_fwd` so it only casts in autocast-enabled regions (also updates custom_fwd to ignore fp64 inputs, like the C++ wrappers).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36171

Differential Revision: D22179511

Pulled By: ngimel

fbshipit-source-id: 5a93d070179a43206066bce19da0a5a19ecaabbd
2020-06-23 10:23:02 -07:00
Michael Carilli
25f918548d Allow GradScaler to be pickled (#38296)
Summary:
Should unblock https://github.com/PyTorchLightning/pytorch-lightning/issues/1782.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38296

Differential Revision: D21553296

Pulled By: albanD

fbshipit-source-id: 9041a72d7cf8833e4b01bc767fd2321f17c7c5f2
2020-05-14 09:14:28 -07:00
Michael Carilli
e6bc34f549 Amp gradient accumulation example (#36601)
Summary:
Several people have asked me about proper Amp usage with gradient accumulation.  In particular, it's [unclear to people](https://github.com/NVIDIA/apex/issues/439#issuecomment-610351482) that you should only call `scaler.unscale_()` (if desired) and `scaler.update()` in iterations where you actually plan to step.  This PR adds a minimal accumulation example.

I built the docs locally and it looks free from sphinx errors, at least.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36601

Differential Revision: D21082295

Pulled By: ngimel

fbshipit-source-id: b2faa6c02b9f7e1972618a0f1d5360a03f0450ac
2020-04-17 09:56:36 -07:00
Michael Carilli
0f0271e255 [RELAND2] Eager autocasting, out-of-place ops only (with MSVC 2017 fix) (#35102)
Summary:
This is the second reland attempt for https://github.com/pytorch/pytorch/pull/32140.

The first reland attempt https://github.com/pytorch/pytorch/pull/35011 failed due a [small incompatible change](https://github.com/pytorch/pytorch/pull/35011#issuecomment-601754216) in recent master (`skipIfRocm` was removed from `test_data_parallel.py`).

The present PR restores skipIfRocm.

Description from first reland attempt https://github.com/pytorch/pytorch/pull/35011:

> https://github.com/pytorch/pytorch/pull/32140 was approved and merged, but [reverted](d0577e19f0) because it broke builds with versions of Visual Studio older than 15.8 that were not represented in public CI.  The build failures were caused by a [known VS bug](https://developercommunity.visualstudio.com/content/problem/27729/allow-function-with-internal-linkage-as-template-n.html), fixed in versions 15.8 and newer.
>
> The present PR reverts the revert (restoring https://github.com/pytorch/pytorch/pull/32140 's diffs) and adds a workaround to enable compilation with VS < 15.8.  The workaround isn't pretty, but it's guarded by macros such that it's only used when compiling with VS < 15.8.  All other builds compile with the same code/control flow as was merged in https://github.com/pytorch/pytorch/pull/32140.
>
> Original description of https://github.com/pytorch/pytorch/pull/32140:
> > Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
> Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081
>
> > In-place ops and ops with user-supplied out=... can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/issues/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests. Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35102

Differential Revision: D20596918

Pulled By: ezyang

fbshipit-source-id: 60caa279bb0ce4a9bb0b28c1d585d42cf1cc7e50
2020-03-24 09:08:04 -07:00
Mike Ruberry
fe276d541e Revert D20541921: [pytorch][PR] [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix)
Test Plan: revert-hammer

Differential Revision:
D20541921

Original commit changeset: abb5488dca86

fbshipit-source-id: d2c6038978f80e5429632f8b49107090a8a247f4
2020-03-19 22:39:12 -07:00
Michael Carilli
991b97277a [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix) (#35011)
Summary:
https://github.com/pytorch/pytorch/pull/32140 was approved and merged, but [reverted](d0577e19f0) because it broke builds with versions of Visual Studio older than 15.8 that were not represented in public CI.  The build failures were caused by a [known VS bug](https://developercommunity.visualstudio.com/content/problem/27729/allow-function-with-internal-linkage-as-template-n.html), fixed in versions 15.8 and newer.

The present PR reverts the revert (restoring https://github.com/pytorch/pytorch/pull/32140 's diffs) and adds a workaround to enable compilation with VS < 15.8.  The workaround isn't pretty, but it's guarded by macros such that it's only used when compiling with VS < 15.8.  All other builds compile with the same code/control flow as was merged in https://github.com/pytorch/pytorch/pull/32140.

Original description of https://github.com/pytorch/pytorch/pull/32140:
> Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

> In-place ops and ops with user-supplied out=... can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/issues/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests. Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35011

Differential Revision: D20541921

Pulled By: ezyang

fbshipit-source-id: abb5488dca8620b0daac4306ebf2bb47fc36e4f5
2020-03-19 20:18:18 -07:00
Edward Yang
d0577e19f0 Revert D20346700: [pytorch][PR] Eager autocasting, out-of-place ops only
Test Plan: revert-hammer

Differential Revision:
D20346700

Original commit changeset: 12d77b391731

fbshipit-source-id: 108d72bf24232f443c0be293ec932c0c478d6a60
2020-03-18 11:42:51 -07:00
Michael Carilli
aaa8f02156 Eager autocasting, out-of-place ops only (#32140)
Summary:
Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

In-place ops and ops with user-supplied `out=...` can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/pull/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests.  Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32140

Differential Revision: D20346700

Pulled By: ezyang

fbshipit-source-id: 12d77b3917310186fbddf11c59b2794dc859131f
2020-03-18 10:28:21 -07:00
Michael Carilli
a726827ec8 Formatting changes for gradient scaling (#33832)
Summary:
hard to get right locally...I can build the docs but never quite match what it looks like live.  the bullet point indentation was just an oversight.

Removing `Returns:` formatting tabs because they take up a lot of space when rendered and add no clarity.  Some functions in Pytorch [do use them](https://pytorch.org/docs/master/torch.html#torch.eye), but [many don't bother](https://pytorch.org/docs/master/torch.html#torch.is_tensor), so apparently some people shared my feelings (Not using them is in line with existing practice).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33832

Differential Revision: D20135581

Pulled By: ngimel

fbshipit-source-id: bc788a7e57b142f95c4fa5baf3fe01f94c45abd8
2020-02-28 11:40:48 -08:00
Michael Carilli
fc6a153688 [WIP] Reanimate gradient scaling API with original scale update heuristic (#33366)
Summary:
Also, windows memory failures responsible for the earlier reversion have been fixed.

This PR (initially) contains 2 commits:
* a revert of the revert
* all changes to implement the original Apex scale update heuristic, squashed into a single commit for easier diff review
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33366

Differential Revision: D20099026

Pulled By: ngimel

fbshipit-source-id: 339b9b6bd5134bf055057492cd1eedb7e4461529
2020-02-25 19:00:34 -08:00
Edward Yang
ae53f8dd25 Revert D19859905: [pytorch][PR] Gradient scaling API
Test Plan: revert-hammer

Differential Revision:
D19859905

Original commit changeset: bb8ae6966214

fbshipit-source-id: 28f1c93e8a00e3a4bbe8cc981499b15468f0b970
2020-02-14 11:03:27 -08:00
Michael Carilli
40246fa63c Gradient scaling API (#26512)
Summary:
This PR implements the gradient scaling API that mruberry, jjsjann123, ngimel, zdevito, gchanan and I have been discussing.  Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081.

Volume-wise, this PR is mostly documentation and tests.  The Python API (found entirely in `torch/cuda/amp/amp_scaler.py`) is lightweight .  The exposed functions are intended to make the implementation and control flow of gradient scaling convenient, intuitive, and performant.

The API is probably easiest to digest by looking at the documentation and examples. `docs/source/amp.rst` is the homepage for the Automatic Mixed Precision package.  `docs/source/notes/amp_examples.rst` includes several examples demonstrating common but not-immediately-obvious use cases.  Examples are backed by tests in `test_cuda.py` (and thankfully the tests pass :P).

Two small utility kernels have been added in `native/cuda/AmpKernels.cu` to improve performance and avoid host-device synchronizations wherever possible.

Existing optimizers, both in the wild and in Pytorch core, do not need to change to use the scaling API.

However, the API was also designed to establish a contract between user scripts and optimizers such that writers of _new_ custom optimizers have the control points they need to implement fast, optionally sync-free updates.  User scripts that obey the scaling API can drop such custom optimizers in and reap performance benefits without having to change anything aside from the optimizer constructor itself.  [I know what the contract with custom optimizers should be](35829f24ef/torch/cuda/amp/amp_scaler.py (L179-L184)), but I'm waiting for review on the rest of the API before I go about documenting it (it will be given a dedicated section in `docs/source/notes/amp_examples.rst`.

Currently, the gradient scaling examples do not include the auto-casting API as discussed in https://github.com/pytorch/pytorch/issues/25081.  The gradient scaling API is intended to be orthogonal/modular relative to autocasting.  Without auto-casting the gradient scaling API is fully use-_able_, but not terribly use-_ful_, so it's up to you guys whether you want to wait until auto-casting is ready before merging the scaling API as well.

### Todo
- [ ] How do I get c10 registered status for my two custom kernels?  They're very simple.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26512

Differential Revision: D19859905

Pulled By: mruberry

fbshipit-source-id: bb8ae6966214718dfee11345db824389e4286923
2020-02-13 11:06:06 -08:00