mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
71cb13869b
8 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
f884e817d4 |
Make Python op registration work with torchdeploy/multipy (#87162)
See strategy at PythonOpRegistrationTrampoline.cpp for the big picture. Along the way, I made OperatorHandle support == and hashing, and slightly changed the low level python_dispatch impl API to disallow empty strings for dispatch key, which had the knock on effect of requiring us to explicitly make sure we pass in CompositeImplicitAutograd if we would have passed in "" (I didn't apply this to the rest of the file because I'm lazy.) Test strategy is we delete the logic for preventing Python op registrations in torch from being skipped in a torchdeploy context and show CI still works. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162 Approved by: https://github.com/anjali411, https://github.com/bdhirsh |
||
|
|
df69660832 |
Revert "Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"" (#82599)
This reverts commit
|
||
|
|
532b8a9e00 |
Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"
This reverts commit
|
||
|
|
9465c0e0b5 |
Add a lint rule for torch/csrc/util/pybind.h include (#82552)
We define specializations for pybind11 defined templates (in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently it is important that these specializations *always* be #include'd when making use of pybind11 templates whose behavior depends on these specializations, otherwise we can cause an ODR violation. The easiest way to ensure that all the specializations are always loaded is to designate a header (in this case, torch/csrc/util/pybind.h) that ensures the specializations are defined, and then add a lint to ensure this header is included whenever pybind11 headers are included. The existing grep linter didn't have enough knobs to do this conveniently, so I added some features. I'm open to suggestions for how to structure the features better. The main changes: - Added an --allowlist-pattern flag, which turns off the grep lint if some other line exists. This is used to stop the grep lint from complaining about pybind11 includes if the util include already exists. - Added --match-first-only flag, which lets grep only match against the first matching line. This is because, even if there are multiple includes that are problematic, I only need to fix one of them. We don't /really/ need this, but when I was running lintrunner -a to fixup the preexisting codebase it was annoying without this, as the lintrunner overall driver fails if there are multiple edits on the same file. I excluded any files that didn't otherwise have a dependency on torch/ATen, this was mostly caffe2 and the valgrind wrapper compat bindings. Note the grep replacement is kind of crappy, but clang-tidy lint cleaned it up in most cases. See also https://github.com/pybind/pybind11/issues/4099 Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552 Approved by: https://github.com/albanD |
||
|
|
30fb2c4aba |
[lint] autoformat test/cpp and torch/csrc
Let's have some fun. Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828 Approved by: https://github.com/ezyang |
||
|
|
9e3605de98 |
[RELAND] New operator registration API (#35061) (#35629)
Summary: Reland of https://github.com/pytorch/pytorch/pull/35061 ; removed the get qualified type name magic from debug strings to work around MSVC 2017 bug. Main points of the new API: - You can register implementations (impl) without having to specify a schema. - Registrations are commutative, so no matter what order your static initializers run, you end up with the same end result. op_registration_test.cpp contains a reasonably comprehensive accounting for the available API surface How does this implementation proceed? The basic concept is to relax the internal invariants of Dispatcher data structures to allow the possibility that a FunctionSchema is not specified in an Operator. - DispatchKeyExtractor has an uninitialized state where it doesn't look for dispatch keys in any arguments of the stack. It can have a schema (de)registered to itself post facto with registerSchema/unregisterSchema. - DispatchTable has a new constructor taking only an OperatorName for the uninitialized state. It can have a schema (de)registered to itself post facto with registerSchema/unregisterSchema - OperatorDef maintains counts of both defs and well as defs_and_impls. defs_and_impls keeps track of the outstanding impl registrations; you may have impl registrations but no defs. If there are no defs (no schema), the operator is not returned by findSchema. A new findOperatorByName fucntion unconditionally returns the OperatorHandle even if there's no schema. OperatorHandle::hasSchema can be used to check if the operator has schema. - Replaced 'registerKernel' with 'registerImpl', which is the new interface for directly registering kernels without implementations. - Because 'registerImpl' no longer requires an OperatorHandle, change 'registerDef' to only return a RegistrationHandleRAII. This is marginally less efficient (since we're doing two hash table lookups on a registration now), but this won't matter in the long term, and probably doesn't matter now either. - Rename registerBackendFallbackKernel to registerFallback (this exposed a bunch of places where we're improperly directly interfacing with Dispatcher; we need to add this capability to the true public API) - All code generated internal registrations are switched to use the new API. This includes VariableType registrations (which previously weren't converted) and the mobile autograd stuff - Switch the new-style def()/impl() APIs to interact directly with Dispatcher, rather than indirecting through the old API - We deleted alias analysis kind merging entirely. As a nod to BC, it's possible to define a full schema with alias analysis kind, and then later do another full schema def with missing alias analysis kind, but the opposite direction is not allowed. We can remove this entirely following the plan at https://github.com/pytorch/pytorch/issues/35040 - Schema matching is moved inside the dispatcher, because we might not be able to immediately schema match at the point of an impl() (because we don't have the schema yet). To do this, we store the inferred function schema inside a KernelEntry, so we can check it when we get the real schema. - Registered kernel functions now store a debug string which can be used to more easily identify them. Tests use this to distinguish between multiple distinct registrations; regular invocations get only very basic information. Because we need our static initializers to work no matter what order they're run, the testing strategy on this PR is quite involved. The general concept: - Bind a (very gimped) version of the dispatcher API from Python, so that we can easily write a more complex testing harness using expect tests. - For series of registrations we want to test, exhaustively test every possible permutation of registrations (and deregistrations), and show that the intermediate states agree no matter what path is taken. - Intermediate states are rendered using a new dumpState() debugging method that prints the internal state of the dispatcher. This method may be generally useful for people who want to see what's in the dispatcher. - Simultaneously, add a new invariant testing function which checks that the internal invariants of the dispatcher are upheld (so we don't have to print internal implementation details of the dispatcher) The testing framework found a few bugs in development. For example, here is a case where we registered schema too early, before checking if it was valid: ``` Traceback (most recent call last): File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch ], raises=True) File "test/test_dispatch.py", line 135, in commute results=results, raises=raises) File "test/test_dispatch.py", line 83, in run_permutation .format(ctor_order[:i], op_ix)) File "test/test_dispatch.py", line 59, in check_invariants .format(expected_provenance, actual_provenance) AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n' name: test::foo - schema: (none) + schema: test::foo(Tensor x, Tensor y) -> (Tensor) catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0) : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!) ``` There are also C++ smoketests for the API. These tests comprehensively cover the C++ API surface of the new operator registration API, but don't check very hard if the API does the right thing (that's what test_dispatch.py is for) Some miscellaneous changes which could have been split into other PRs, but I was too lazy to do so: - Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName) - Add cloneWithName functionality to FunctionSchema - Unconditionally generate schema registration, even when type_method_dispatch is a dict. The one exception is for manual registrations.... - Add fallback, CppFunction::makeFallthrough and CppFunction::makeFromBoxedFunction to public API of op_registration, so we can stop calling internal registerImpl directly - Add new syntax sugar dispatch_autograd for registering autograd kernels - Minor OperatorName cleanup, storing OperatorName in DispatchTable and defining operator<< on OperatorName - Refactored the op registration API to take FunctionSchema directly. We now do namespacing by post facto fixing up the OperatorName embedded in FunctionSchema. This also means that you can now do torch::import("ns1").def("ns2::blah") and have the ns2 override ns1 (although maybe this is not the correct behavior.) - New torch::schema public API, for attaching alias analysis kind annotation kinds. This meant we had to template up some function signatures which previously took const char*. There's now a nice comment explaining this strategy. - torch::import now takes std::string which means we can use the namespacing from Python Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/35629 Differential Revision: D20724551 Pulled By: ezyang fbshipit-source-id: befa46a1affb4ec4ae1fb39e3564a63695a6ca41 |
||
|
|
227beb9095 |
Revert D20680520: New operator registration API
Test Plan: revert-hammer Differential Revision: D20680520 Original commit changeset: 5d39a28e4ec7 fbshipit-source-id: 5b2497ffc24db9a05b01d526f161bc0164f9f707 |
||
|
|
28ab8c6ff8 |
New operator registration API (#35061)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35061 Main points of the new API: - You can register implementations (impl) without having to specify a schema. - Registrations are commutative, so no matter what order your static initializers run, you end up with the same end result. op_registration_test.cpp contains a reasonably comprehensive accounting for the available API surface How does this implementation proceed? The basic concept is to relax the internal invariants of Dispatcher data structures to allow the possibility that a FunctionSchema is not specified in an Operator. - DispatchKeyExtractor has an uninitialized state where it doesn't look for dispatch keys in any arguments of the stack. It can have a schema (de)registered to itself post facto with registerSchema/unregisterSchema. - DispatchTable has a new constructor taking only an OperatorName for the uninitialized state. It can have a schema (de)registered to itself post facto with registerSchema/unregisterSchema - OperatorDef maintains counts of both defs and well as defs_and_impls. defs_and_impls keeps track of the outstanding impl registrations; you may have impl registrations but no defs. If there are no defs (no schema), the operator is not returned by findSchema. A new findOperatorByName fucntion unconditionally returns the OperatorHandle even if there's no schema. OperatorHandle::hasSchema can be used to check if the operator has schema. - Replaced 'registerKernel' with 'registerImpl', which is the new interface for directly registering kernels without implementations. - Because 'registerImpl' no longer requires an OperatorHandle, change 'registerDef' to only return a RegistrationHandleRAII. This is marginally less efficient (since we're doing two hash table lookups on a registration now), but this won't matter in the long term, and probably doesn't matter now either. - Rename registerBackendFallbackKernel to registerFallback (this exposed a bunch of places where we're improperly directly interfacing with Dispatcher; we need to add this capability to the true public API) - All code generated internal registrations are switched to use the new API. This includes VariableType registrations (which previously weren't converted) and the mobile autograd stuff - Switch the new-style def()/impl() APIs to interact directly with Dispatcher, rather than indirecting through the old API - We deleted alias analysis kind merging entirely. As a nod to BC, it's possible to define a full schema with alias analysis kind, and then later do another full schema def with missing alias analysis kind, but the opposite direction is not allowed. We can remove this entirely following the plan at https://github.com/pytorch/pytorch/issues/35040 - Schema matching is moved inside the dispatcher, because we might not be able to immediately schema match at the point of an impl() (because we don't have the schema yet). To do this, we store the inferred function schema inside a KernelEntry, so we can check it when we get the real schema. - Registered kernel functions now store a debug string which can be used to more easily identify them. There's some best effort stuff based on __FUNCSIG__ but this is only really capable of reporting types and not function symbols. Tests use this to distinguish between multiple distinct registrations. Because we need our static initializers to work no matter what order they're run, the testing strategy on this PR is quite involved. The general concept: - Bind a (very gimped) version of the dispatcher API from Python, so that we can easily write a more complex testing harness using expect tests. - For series of registrations we want to test, exhaustively test every possible permutation of registrations (and deregistrations), and show that the intermediate states agree no matter what path is taken. - Intermediate states are rendered using a new dumpState() debugging method that prints the internal state of the dispatcher. This method may be generally useful for people who want to see what's in the dispatcher. - Simultaneously, add a new invariant testing function which checks that the internal invariants of the dispatcher are upheld (so we don't have to print internal implementation details of the dispatcher) The testing framework found a few bugs in development. For example, here is a case where we registered schema too early, before checking if it was valid: ``` Traceback (most recent call last): File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch ], raises=True) File "test/test_dispatch.py", line 135, in commute results=results, raises=raises) File "test/test_dispatch.py", line 83, in run_permutation .format(ctor_order[:i], op_ix)) File "test/test_dispatch.py", line 59, in check_invariants .format(expected_provenance, actual_provenance) AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n' name: test::foo - schema: (none) + schema: test::foo(Tensor x, Tensor y) -> (Tensor) catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0) : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!) ``` There are also C++ smoketests for the API. These tests comprehensively cover the C++ API surface of the new operator registration API, but don't check very hard if the API does the right thing (that's what test_dispatch.py is for) Some miscellaneous changes which could have been split into other PRs, but I was too lazy to do so: - Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName) - Add cloneWithName functionality to FunctionSchema - Unconditionally generate schema registration, even when type_method_dispatch is a dict. The one exception is for manual registrations.... - Add fallback, CppFunction::makeFallthrough and CppFunction::makeFromBoxedFunction to public API of op_registration, so we can stop calling internal registerImpl directly - Add new syntax sugar dispatch_autograd for registering autograd kernels - Minor OperatorName cleanup, storing OperatorName in DispatchTable and defining operator<< on OperatorName - Refactored the op registration API to take FunctionSchema directly. We now do namespacing by post facto fixing up the OperatorName embedded in FunctionSchema. This also means that you can now do torch::import("ns1").def("ns2::blah") and have the ns2 override ns1 (although maybe this is not the correct behavior.) - New torch::schema public API, for attaching alias analysis kind annotation kinds. This meant we had to template up some function signatures which previously took const char*. There's now a nice comment explaining this strategy. - torch::import now takes std::string which means we can use the namespacing from Python Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Differential Revision: D20680520 Pulled By: ezyang fbshipit-source-id: 5d39a28e4ec7c73fe4b1fb2222e865ab65e188f5 |