Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29143
THP_CORE macro is a very old macro that appeared to have served
two purposes:
1. The torch-python equivalent of CAFFE2_BUILD_MAIN_LIB, to toggle
symbol visibility headers
2. Some sort of ad hoc way of hiding certain definitions from headers
so external clients can't get at them.
It did (2) in a very confusing manner, because we set THP_CORE in both
torch and torch-python (it shouldn't do anything in torch). In this
PR I just get rid of use case (2) entirely (so everything shows up in
headers all the time), and then redo (1) using a new THP_BUILD_MAIN_LIB
macro. This cleans up some of the macro definitions and makes my life
easier for working on #27215.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18309594
Pulled By: ezyang
fbshipit-source-id: adcb6d7cb387cd818480137e2b94e5e761dbfefc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29041
1) Enhanced autograd unit tests to test the
torch.distributed.autograd.backward() API more thoroughly on Python UDFs.
2) Enhanced `python_error` to override `what` such that it returns an
appropriate error string if we call `what()` on this error. This ensures we can
propagate exceptions over the wire during RPCs (since we get the error string
by calling what() on the exception)
ghstack-source-id: 93098679
ghstack-source-id: 93098679
Test Plan: waitforbuildbot
Reviewed By: mrshenli
Differential Revision: D18273041
fbshipit-source-id: 85d3932fed6337668a812367fdfce233c1b3ff8e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28824
1) Enhanced autograd unit tests to test the
torch.distributed.autograd.backward() API more thoroughly on Python UDFs.
2) Enhanced `python_error` to override `what` such that it returns an
appropriate error string if we call `what()` on this error. This ensures we can
propagate exceptions over the wire during RPCs (since we get the error string
by calling what() on the exception)
ghstack-source-id: 92972494
Test Plan: waitforbuildbot
Differential Revision: D18195584
fbshipit-source-id: b795daf644ba1816fdec484545192ab55a2f71e7
Summary:
This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198
Differential Revision: D13468797
Pulled By: goldsborough
fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026
Differential Revision: D13458784
Pulled By: goldsborough
fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
Summary:
This PR enables C++ frontend modules to be bound into Python and added as submodules of Python modules. For this, I added lots of pybind11 bindings for the `torch::nn::Module` class, and modified the `torch.nn.Module` class in Python to have a new Metaclass that makes `isinstance(m, torch.nn.Module)` return true when `m` is a C++ frontend module. The methods and fields of C++ modules are bound in such a way that they work seamlessly as submodules of Python modules for most operations (one exception I know of: calling `.to()` ends up calling `.apply()` on each submodule with a Python lambda, which cannot be used in C++ -- this may require small changes on Python side).
I've added quite a bunch of tests to verify the bindings and equality with Python. I think I should also try out adding a C++ module as part of some large PyTorch module, like a WLM or something, and see if everything works smoothly.
The next step for inter-op across our system is ScriptModule <-> C++ Frontend Module inter-op. I think this will then also allow using C++ frontend modules from TorchScript.
apaszke zdevito
CC dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13481
Differential Revision: D12981996
Pulled By: goldsborough
fbshipit-source-id: 147370d3596ebb0e94c82cec92993a148fee50a7
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12792
This is a follow up diff after D10238910.
Only non-codemod change is the removal of ATen/Error.h and ATen/core/Error.h. Other files are basically changing the inclusion path + clang format for inclusion order.
Reviewed By: bddppq
Differential Revision: D10437824
fbshipit-source-id: 7f885f80ab5827468d1351cfb2765d0e3f555a69
Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
How did we get so many uses of `NULL` again?
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047
Differential Revision: D9566799
Pulled By: goldsborough
fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130
Update some include paths to make them internally consistent
Reviewed By: ezyang
Differential Revision: D9119906
fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
This PR adds the possibility to build the C++ parts of autograd and jit, with no dependency on Python.
The goal is to allow taking a PyTorch IR representation (a tree s-expr) and running it with provided inputs.
Prerequisite: build PyTorch so that codegen runs once.
Instructions:
cd tools/cpp_build
bash build_all.sh
This will build libtorchjit and torchjit_test in tools/cpp_build/build/torchjit-build. The latter basically runs the code in test_jit.cpp for now.
While writing the PR, it turned out that a few of Python.h includes were redundant. They were removed here (PyTorch tests still pass on my machine, we'll see CI).
* Introduce Python-free builds of autograd and jit
* Remove NO_PYTHON ifdef in functions/special
Implements from_numpy using ATen tensors. Variable.from_numpy is a
convenient placeholder for the variant that returns Variables until we
merge Tensor and Variable.
The behavior is slightly changed:
- from_numpy() on an empty array now returns an empty tensor instead of
throwing an exception. The shape may not be preserved.
- CharTensor(ndarray) used to throw an exception. It now copies the
ndarray. Copying is implemented via ATen toType.
Implements basic and advanced indexing using ATen tensors/variables.
Basic indexing is translated at the Python-binding level
(python_variable_indexing.cpp) to slice/squeeze/unsqueeze/select calls.
Advanced indexing is implemented in ATen in terms of take() and put()
calls.
The core autograd Variable, Function, and Engine no longer depend on the
Python API. This let's us implement functions in C++. In the future, we
can also multithread engine and release the GIL for most of the
non-Python backwards.